Volume 25, Issue 6 (11-2021)                   IBJ 2021, 25(6): 399-407 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani M S, Noofeli M, Banihashemi S R, Shahcheraghi* F, Eftekhar F. Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Bordetella pertussis as a Vaccine Candidate. IBJ 2021; 25 (6) :399-407
URL: http://ibj.pasteur.ac.ir/article-1-3042-en.html
Background: Pertussis is a current contagious bacterial disease caused by Bordetella pertussis (Bp). Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (pertussis toxin [PTX], PRN [pertactin], and filamentous hemagglutinin [FHA]) from Bp predominant strains and also compare the expression of these factors in the outer membrane vesicles (OMVs) obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6Í 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Kuchar E, Karlikowska-Skwarnik M, Han S, and Nitsch-Osuch A. Pertussis: history of the disease and current prevention failure. Advances in experimental medicine biology 2016; 934: 77-82. [DOI:10.1007/5584_2016_21]
2. Sala-Farré MR, Arias-Varela C, Recasens-Recasens A, Simó-Sanahuja M, Muñoz-Almagro C, Pérez-Jové J. Pertussis epidemic despite high levels of vaccination coverage with acellular pertussis vaccine. Enfermedades infecciosasy microbiologia clinica 2015; 33(1): 27-31. [DOI:10.1016/j.eimc.2013.09.013]
3. Barkoff AM, He Q. Molecular epidemiology of Bordetella pertussis. Advances in experimental medicine biology 2019; 1183: 19-33. [DOI:10.1007/5584_2019_402]
4. Clark TA. Changing pertussis epidemiology: everything old is new again. The journal of infectious diseases 2014; 209(7): 978-981. [DOI:10.1093/infdis/jiu001]
5. Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, genetics and evolution 2016; 40: 136-143. [DOI:10.1016/j.meegid.2016.02.032]
6. Hoey J. Pertussis in adults. CMAJ 2003; 168(4): 453-454.
7. Guiso N. Whooping cough from infants to adults. Bulletin de l'Academie nationale de medecine 2008; 192(7): 1437-1449. [DOI:10.1016/S0001-4079(19)32692-5]
8. Tan T, Dalby T, Forsyth K, Halperin SA, Heininger U, Hozbor D, Plotkin S, Ulloa-Gutierrez R, Wirsing von König CH. Pertussis across the globe: recent epidemiologic trends from 2000 to 2013. The pediatric infectious disease journal 2015; 34(9): 222-232. [DOI:10.1097/INF.0000000000000795]
9. Bart MJ, van Gent M, van der Heide HG, Boekhorst J, Hermans P, Parkhill J, Mooi FR. Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC genomics 2010; 11: 1-8. [DOI:10.1186/1471-2164-11-627]
10. Mooi F, Van Der Maas NA, De Melker HE. Pertussis resurgence: waning immunity and pathogen adaptation-two sides of the same coin. Epidemiology and infection 2014; 142(4): 685-694. [DOI:10.1017/S0950268813000071]
11. Bart MJ, Harris SR, Advani A, Arakawa Y, Bottero D Bouchez V, Cassiday PK, Chiang CS, Dalby T, Fry NK, Gaillard ME, van Gent M, Guiso N, Hallander HO, Harvill ET, He Q, van der Heide HG, Heuvelman K, Hozbor DF, Kamachi K, Karataev GI, Lan R, Lutyńska A, Maharjan RP, Mertsola J, Miyamura T, Octavia S, Preston A, Quail MA, Sintchenko V, Stefanelli P, Tondella ML, Tsang RS, Xu Y, Yao SM, Zhang S, Parkhill J, Mooi FR. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio 2014; 5(2): 1-9. [DOI:10.1128/mBio.01074-14]
12. Pawloski L, Queenan AM, Cassiday PK, Lynch AS, Harrison MJ, Shang W, Williams MM, Bowden KE, Burgos-Rivera B, Qin X, Messonnier N, Tondella ML. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clinical and vaccine immunology 2014; 21(2): 119-125. [DOI:10.1128/CVI.00717-13]
13. Williamson YM, Moura H, Whitmon J, Woolfitt AR, Schieltz DM, Rees JC, Guo S, Kirkham H, Bouck D, Ades EW, Tondella ML, Carlone GM, Sampson JS, Barr JR. A proteomic characterization of Bordetella pertussis clinical isolates associated with a California state pertussis outbreak. International journal of proteomics 2015; 2015: 1-12. [DOI:10.1155/2015/536537]
14. Hozbor D. New Pertussis vaccines: A need and a challenge. Advances in experimental medicine and biology 2019; 1183: 115-126. [DOI:10.1007/5584_2019_407]
15. Ormazábal M, Bartel E, Gaillard ME, Bottero D, Errea A, Zurita ME, Moreno G, Rumbo M, Castuma C, Flores D, Martín MJ, Hozbor D. Characterization of the key antigenic components of pertussis vaccine based on outer membrane vesicles. Vaccine 2014; 32(46): 6084-6090. [DOI:10.1016/j.vaccine.2014.08.084]
16. Hozbor DF. Outer membrane vesicles: an attractive candidate for pertussis vaccines. Expert review of vaccines 2017; 16(3): 193-196. [DOI:10.1080/14760584.2017.1276832]
17. Tan K, Li R, Huang X, Liu Q. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Frontiers in immunology 2018; 9: 783-792. [DOI:10.3389/fmicb.2018.00783]
18. Gaillard ME, Bottero D, Errea A, Ormazábal M, Zurita ME, Moreno G, Rumbo M, Castuma C, Bartel E, Flores D, van der Ley P, van der Ark A, F Hozbor D. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 2014; 32(8): 931-937. [DOI:10.1016/j.vaccine.2013.12.048]
19. Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, Mills KHG, Hozbor D. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Frontiers in cellular and infection microbiology 2019; 9: 125-134. [DOI:10.3389/fcimb.2019.00125]
20. Carbonetti NH. Bordetella pertussis: new concepts in pathogenesis and treatment. Current opinion in infectious diseases 2016; 29(3): 287-294. [DOI:10.1097/QCO.0000000000000264]
21. Smith AM, Guzmán CA, Walker MJ. The virulence factors of Bordetella pertussis: a matter of control. FEMS microbiology review 2001; 25(3): 309-333. [DOI:10.1111/j.1574-6976.2001.tb00580.x]
22. Mooi FR, He Q, van Oirschot H, Mertsola J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infection and immunity 1999; 67(6): 3133-3134. [DOI:10.1128/IAI.67.6.3133-3134.1999]
23. Badamchi A, Bahrami F, Tasbiti AH, Yari S, Shafiei M, Shahcheraghi F, Siadat SD. Immuno-proteomics analysis between OMV of vaccine and dominant wild type strains of Bordetella pertussis in Iran. Iranian journal of microbiology 2020; 12(2): 77-88. [DOI:10.18502/ijm.v12i2.2610]
24. Hozbor D, Rodriguez ME, Fernández J, Lagares A, Guiso N, Yantorno O. Release of outer membrane vesicles from Bordetella pertussis. Current microbiology 1999; 38(5): 273-278. [DOI:10.1007/PL00006801]
25. Klimentová J, Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological research 2015; 170: 1-9. [DOI:10.1016/j.micres.2014.09.006]
26. Soltani MS, Eftekhar F, Noofeli M, Banihashemi SR, Shahcheraghi F. Comparison of two different methods in the extraction of outer membrane vesicles from the Bordetella pertussis as a vaccine candidate. Archive of Razi Institute 2021; 76(3): 411-419.
27. Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, Rumbo M, Hozbor D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008; 26(36): 4639-4646. [DOI:10.1016/j.vaccine.2008.07.004]
28. Weber C, Boursaux-Eude C, Coralie G, Caro V, Guiso N. Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. Journal of clinical microbiology 2001; 39(12): 4396-4403. [DOI:10.1128/JCM.39.12.4396-4403.2001]
29. Surendran N, Pichichero M. Genetically detoxified pertussis toxin induces superior antigen specific CD4 T cell responses compared to chemically detoxified pertussis toxin. Human vaccines and immunotherapeutics 2019; 15(5): 1167-1170. [DOI:10.1080/21645515.2019.1565270]
30. Ochiai M, Kataoka M, Toyoizumi H, Kamachi K, Yamamoto A, Horiuchi Y. Evaluation of endotoxin content of diphtheria-tetanus-acellular pertussis combined (DTaP) vaccines that interfere with the bacterial endotoxin test. Vaccine 2003; 21: 1862-1866. [DOI:10.1016/S0264-410X(03)00006-9]
31. Horiuchi Y, Takahashi M, Konda T, Ochiai M, Yamamoto Y, Kataoka M, Toyoizumi H, Arakawa Y. Quality control of diphtheria tetanus acellular pertussis combined (DTaP) vaccines in Japan. Japanese Journal of Infectious diseases 2001; 54: 167-180.
32. Asensio CJ, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, van der Ley P, van der Ark A, Hozbor D. Outer membrane vesicles obtained from Bordetella pertussis tohama expressing the lipid A deacylase pagL as a novel acellular vaccine candidate. Vaccine 2011; 29: 1649-1656. [DOI:10.1016/j.vaccine.2010.12.068]
33. Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: microbiology, disease, treatment, and prevention. Clinical microbiology reviews 2016; 29: 449-486. [DOI:10.1128/CMR.00083-15]
34. Guiso N. Bordetella pertussis and pertussis vaccines. Clinical infectious diseases 2009; 49(10): 1565-1569. [DOI:10.1086/644733]
35. Mooi FR, Van Loo I, King AJ. Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerging infectious diseases 2001; 7(3 Suppl(: 526-531. [DOI:10.3201/eid0707.017708]
36. Althouse BM, Scarpino SV. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC medicine 2015; 13: 1-8. [DOI:10.1186/s12916-015-0382-8]
37. He Q, Mertsola J. Factors contributing to pertussis resurgence. Future microbiology 2008; 3)3): 329-339. [DOI:10.2217/17460913.3.3.329]
38. Fry NK, Neal S, Harrison TG, Miller E, Matthews R, George RC. Genotypic variation in the Bordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infection and immunity 2001; 69(9): 5520-5528. [DOI:10.1128/IAI.69.9.5520-5528.2001]
39. Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, Willems RJ. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: Temporal trends and evidence for vaccine-driven evolution. Infection and immunity 1998; 66(2): 670-675. [DOI:10.1128/IAI.66.2.670-675.1998]
40. Mooi FR, van Loo HMI, van Gent M, He Q, Bart MJ, Heuvelman KJ, de Greeff SC, Diavatopoulos D, Teunis P, Nagelkerke N, Mertsola J. Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerging infectious diseases 2009; 15(8): 1206-1213. [DOI:10.3201/eid1508.081511]
41. Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerging microbes and infections 2019; 8(1): 1416-1427. [DOI:10.1080/22221751.2019.1665479]
42. Nikbin VS, Ahmadi NJ, Hosseinpour M, Lotfi NM, Shooraj F, Sadeghpour F, Shahcheraghi F. Virulence factors variation among Bordetella pertussis isolates in Iran. International journal of molecular and cellular medicine 2015; 4(2): 138-144.
43. Heravi FS, Nikbin VS, Lotfi MN, Badiri P, Ahmadi NJ, Zahraei SM, Shahcheraghi F. Strain variation and antigenic divergence among Bordetella pertussis circulating strains isolated from patients in Iran. European journal of clinical microbiology and infectious diseases 2018; 37(10): 1893-1900. [DOI:10.1007/s10096-018-3323-6]
44. de Gouw D, Hermans PW, Bootsma HJ, Zomer A, Heuvelman K, Diavatopoulos DA, Mooi FR. Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally. PLoS one 2014; 9(1): 1-13. [DOI:10.1371/annotation/1b2cfe52-aaea-4148-aa72-a74c78550192]
45. Barkoff AM, Mertsola J, Pierar D, Dalby T, Hoegh SV, Guillot S, Stefanelli P, van Gent M, Berbers G, Vestrheim D, Greve-Isdahl M, Wehlin L, Ljungman M, Fry NK, Markey K, He Q. Pertactin-deficient Bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. Euro surveillance 2019; 24(7): 1-8. [DOI:10.2807/1560-7917.ES.2019.24.7.1700832]
46. Williams MM, Sen K, Weigand MR, Skoff TH, Cunningham VA, Halse TA, Tondella MC. Bordetella pertussis strain lacking pertactin and pertussis toxin. Emerging infectious diseases 2016; 22(2): 319-327. [DOI:10.3201/eid2202.151332]
47. Mills KH, Ross PJ, Allen AC, Wilk MM. Do we need a new vaccine to control the re-emergence of pertussis? Trends in microbiology 2014; 22(2): 49-52. [DOI:10.1016/j.tim.2013.11.007]
48. Klein NP, Bartlett J, Rowhani-Rahbar A, Fireman B, Baxter R. Waning protection after fifth dose of acellular pertussis vaccine in children. The New England journal of medicine 2012; 367(11): 1012-1019. [DOI:10.1056/NEJMoa1200850]
49. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proceedings of the national academy of sciences of the United States of America 2014; 111(2): 787-792. [DOI:10.1073/pnas.1314688110]
50. Locht C. Pertussis: acellular, whole-cell, new vaccines, what to choose? Expert review of vaccines 2016; 15(6): 671-673. [DOI:10.1586/14760584.2016.1161511]
51. van der Ley P, van den Dobbelsteen G. Next-generation outer membrane vesicle vaccines against Neisseria meningitidis based on nontoxic LPS mutants. Human vaccines 2011; 7(8): 886-890. [DOI:10.4161/hv.7.8.16086]
52. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nature reviews. microbiology 2015; 13(10): 605-609. [DOI:10.1038/nrmicro3525]
53. Cai W, Kesavan DK, Wan J, Abdelaziz MH, Su Z, Xu H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagnostic pathology 2018; 13(1): 95-104. [DOI:10.1186/s13000-018-0768-y]
54. Acevedo R, Fernandez S, Zayas C, Acosta A, Sarmiento ME, Ferro VA, Rosenqvist E, Campa C, Cardoso D, Garcia L, Perez JL. Bacterial outer membrane vesicles and vaccine applications. Frontiers in immunology 2014; 5: 121-129. [DOI:10.3389/fimmu.2014.00121]
55. van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnology Journal 2015; 10(11): 1689-1706. [DOI:10.1002/biot.201400395]
56. Holst J, Oster P, Arnold R, Tatley M, Næss L, Aaberge I, Galloway Y, McNicholas A, O'hallahan J, Rosenqvist E, Black S. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Human vaccines and immunotherapeutics 2013; 9(6): 1241-1253. [DOI:10.4161/hv.24129]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb