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ABSTRACT

Background: Young age at first full-term pregnancy (FFTP) is an important factor in breast cancer risk reduction. It
is postulated that this protective effect is the result of stable molecular signatures imprinted by physiological
process of pregnancy, but the molecular mechanism of this protective role is unclear. The aim of the current study
was to identify the effect of early FFTP on methylation status of FOXA1 gene body. FOXAl is an essential
transcription factor for mammary gland development and estrogen responsiveness of breast tissue. Methods:
Fresh frozen normal breast tissues (n = 51) were collected from Iranian women who underwent cosmetic
mammoplasty (27 nulliparous women and 24 parous women who have experienced first pregnancy before the
age of 25). DNA was extracted and then methylated DNA immunoprecipitation (MeDIP) real-time PCR was used to
assess FOXA1 gene body methylation. Results: Our results revealed that FOXA1 methylation level is significantly
higher in early parous compared with nulliparous group (p = 0.041). Conclusion: Our study provides new hint
about the association between early FFTP and epigenetic modifications within gene body of FOXAI in normal
breast tissue. More investigation is required for clarifying molecular mechanisms underlying this association in
order to develop breast cancer prevention strategies. DOI: 10.29252/ibj.23.2.99
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INTRODUCTION

reast cancer is the most common cancer in
women worldwide. This malignancy has
various risk factors that are divided into
modifiable and non-modifiable factors. An early first
full-term pregnancy (FFTP) is the most effective
modifiable and natural prevention method against
breast cancer that can decrease women’s lifelong risk
up to 50% .
The first documented scrutiny of this preventive
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performance was conducted by Bernardino Ramazzini,
the father of industrial medicine, in 18™ century. He
noted that “the nuns are found with breast tumors more
than any other women”, and he deduced this because
nuns remain celibate and childless in their lifetime!.

Major evidence that displayed a correlation between
parity and decreased breast cancer risk was through
MacMahon et al.'s™ research, in which they carried
out an international collaborative case-control study.
They found that pregnancy at early age associates with
protection against breast cancer. Women who
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experienced their first pregnancy before 20 years of
age had a 50% reduced risk of breast cancer compared
with nulliparous women™. Postponing first delivery
after 35 years of age had a 23% increased breast cancer
risk®l. The early pregnancy protective effect is
predominantly against estrogen receptor (ER) positive
breast tumorst and this protection is negligible for
first gestations, which occur between the age of 30 to
34 years™*® A lot of epidemiological studies have
shown that further gestations and breastfeeding
increase the mentioned protective effect!”™. It is
important to consider this protection because most
women in different countries, especially in Western
communities, have been shown to remain nullipara or
to postpone the first pregnancy till the age of 35",
Therefore, the recognition of possible molecular
mechanisms involved in protective effect of pregnancy
will stimulate the advancement of new cancer
prevention strategies.

Several animal models studies have revealed that
physiological process of early FFTP can induce
particular molecular signatures in normal breast tissue.
Researchers have demonstrated that these molecular
changes play an important role in full differentiation of
mammary glands and finally result in lifelong breast
cancer prevention™*®. In addition to the complete
differentiation of breast tissue, it has been suggested
that FFTP protective effect may occur through three
ways, including parity-specific changes in the levels of
circulating hormones, reduction in the number of
mammary stem cells, and variation in response to
estrogen in normal breast tissuel. Despite extensive
studies, the molecular mechanisms of parity-associated
protective effect remain unclear. The lifelong breast
cancer protection requires persistent molecular changes
in the genome of mammary cells; hence, we
hypothesize that epigenetic alterations, which are
stable and permanent, may play a role in pregnancy-
associated protective effect. A previous survey has
revealed that the breast epithelial nuclei of
postmenopausal parous women are small and
heterochromatic with the high level of histone
methylation, as compared to nulliparous females®?.
Therefore, since 2014, researchers have focused on the
investigation of parity-associated epigenetic alterations
in the breast tissue of human and mice. For instance,
Ghosh et all™ have studied the epigenetic
modifications of the normal breast tissue and found
some parity-specific hypermethylated and hypo-
methylated genes. FOXAl was an important
hypermethylated gene among their findings.

FOXALl is a pioneer transcription factor for
mammary gland development and has a significant
function in the biology of luminal epithelial cells of the
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breast tissue™® also it is critical for the

complete function of ERa, which is essential for
hormone responsiveness of mammary tissue*®?%.
It has been shown that FOXAL co-occupies
ERa enhancers in the genome and regulates the
expression of ERa downstream target genes[18’21]. It
has also been explained that the lack of FOXA1l
expression leads to decreased breast cancer cell
proliferation®?.

In a preliminary research, we revealed the significant
association between ESR1 methylation and some
reproductive factors such as FFTP in breast tumors®!.
Since molecular status and molecular interactions in
tumor tissues can be modified by malignancy process,
which finally result in differences between malignant
and normal tissues, in the next step, we evaluated this
association in normal breast tissue with a different
quantitative methylation assay, methylated DNA
immunoprecipitation (MeDIP). According to our
results, there was no relation between FFTP and ESR1
methylation levels in normal breast tissue®®".
Therefore, in the current study, we focused on FOXA1
as an upstream regulator of ER function, and the
methylation status of FOXA1 gene was investigated in
normal breast tissue specimens of early parous and
nulliparous women, in order to identify specifically the
effect of early parity on gene body methylation of
FOXAL.

MATERIALS AND METHODS

Samples collection and DNA extraction

In this cross-sectional study, 51 normal breast tissue
samples were collected from women who were
mammoplasty candidates without a positive history of
breast cancer or other forms of malignant diseases. The
present work was approved by the local Ethical
Committee of Tehran University of Medical Sciences
(Tehran, Iran), and all participants signed the informed
consent form. They also filled out a questionnaire
regarding age, BMI (kg/m?), reproductive factors (the
age at FFTP, number of pregnancies, breastfeeding
duration), as well as medical and smoking history.
Fresh frozen normal breast tissues were collected from
Mehr-e-Sina Surgical Center, Sohrevardi Surgery
Center, and Vali-e-Asr Clinic in Imam Khomeini
Hospital in Tehran. Samples were divided into
two groups: parous (n = 24) and nulliparous women
(n = 27) and were stored at -80 °C, until DNA
extraction was accomplished. Genomic DNA was
extracted using the high salt method™. Isolated DNA
was used as a template for MeDIP-quantitative
polymerase chain reaction (qQPCR) process.
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Tablel. Primer sequences for real-time PCR

Gene Primers sequence

Product size (bp)

H19 (positive control)

F:5- CAGGTCGGGCATTATCCAC-3
R: 5- GCTGTCCTTAGACGGAGTCG-3

175

F: 5- CCACATCGCTCAGACACCAT-3

GAPDH (negative control)

R: 5- CCCCCATACGACTGCAAAGA-3

144

F: 5-GTCCATAGGTGATTTGCTCTATCA-3

FOXAl

R: 5- CAGGAAGATGTGTAATCGCCTTA-3

168

MeDIP real-time gPCR

MeDIP was carried out using Methylamp™
Methylated DNA capture kit (Epigentek, USA, Cat. No
# P-1015). After extraction, DNA (1 ug) was sheared
by sonication to obtain fragments ranging from 200 to
1000 bp. DNA was denatured at 95 °C for 5 minutes
and was then divided into input (IN) and
immunoprecipitated fractions. The immunoprecipitated
fraction was incubated with anti-5-Methylcytosine
monoclonal antibody at room temperature for 1 hour
and subsequently, was washed twice with 150 pl of
antibody buffer and then with wash buffer. Finally,
DNA was eluted from the column according to the kit
instructions. Quality control of MeDIP and relative
fold enrichment was performed by gPCR reaction
using TAKARA SYBR Premix Ex Taq Il (Tli Plus)
(USA, Cat. No: RR820Q) by Corbett rotor gene 6000
cycler (Corbett Life Science, USA). To carry out these
steps, two pairs of primers were designed to detect
CpG islands of H19 imprinted control region (which is
methylated) and GAPDH promoter (an unmethylated
housekeeping gene) as MeDIP positive and negative
controls, respectively (Tablel). URPD online software
(http://bio.kuas.edu.tw/urpd/) was employed to design
the primers. The thermal cycling started with an initial
step at 95 °C for 40 seconds to activate the hot-start
DNA polymerase. Subsequently, a two-step cycling
profile was done as follows: 40 cycles of annealing/
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extension at 95 °C for 15 seconds and 60 °C for 35
seconds. To confirm the amplification of the PCR
target region, the amplification step was followed by a
melting cycle from 70 °C to 99 °C (Fig. 1). Serial
dilution analysis was performed on different DNA
concentrations to calculate the PCR efficiency, and the
slope of the standard curve reactions (Fig. 2). Samples
were tested in duplicate, and non-template control
(NTC) samples (no template control; all reagents were
used in qPCR except DNA) were also used in all
reactions to rule out contamination. Finally, fold-
enrichment ratio and specificity for each sample were
calculated. When specificity was higher than 95% and
fold-enrichment ratio exceeded 251 MeDIP was
considered successful.

After accomplishing quality control for MeDIP, the
enriched DNA fragments in MeDIP were quantified for
target gene (FOXAL) by real-time gPCR (Tables 2).
The primer sequences are shown in Tablel, and
Figure 3 shows the location of FOXAl-amplified
region. Real-time PCR assay was performed in
duplicate reactions and in the total volume of 20 pl.
The thermal conditions of gPCR reaction were as
follows: 95° C for 40 s, 95 °C for 15 s, 60 °C for 35 s
(40 cycles). Relative enrichment of target locus was
normalized by positive control (H19 gene) and
calculated with the 27 formula.

df/dt
w
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Fig. 1. Melting curves analysis for (A) GAPDH, H19 and (B) FOXA1 after real-time PCR.
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Fig. 2. Standard curve for (A) H19 (methylated control gene), (B) GAPDH (un-methylated control gene), and (C) FOXAL (target
gene) real-time PCR assay for evaluating the reaction efficiency by serial dilutions of DNA (the reaction efficiency was acceptable).

Statistical analysis done by IBM SPSS Statistics version 22. Two tailed p
Data were represented by median and interquartile values of less than 0.05 were considered statistically

range or frequency and percentage. Non-parametric significant.

Mann-Whitney U test was used to compare FOXAL

relative methylation between early parous and RESULTS
nulliparous groups. Kruskal-Wallis test was applied to _ _
investigate association between FOXA1 methylation In this study, we used gPCR following MeDIP to

with breastfeeding duration and BMI. The association compare FOXALl gene body methylation levels in
between FOXAL1 methylation and other factors (age, normal breast tissue of early parous with nulliparous
smoking, and number of pregnancies) were analyzed =~ women. The MeDIP fold enrichment ratio and the
by Mann-Whitney U test. Moreover, non-parametric specificity for all samples were in acceptable range; the
spearman correlation test was employed to calculate means of them were 14663 and 98%, respectively,
the correlation between FOXA1 methylation and both ~ showing that MeDIP was performed successfully, and
age and breastfeeding durations. All analyzes were  H19,as a methylated gene, was enriched 14663 times

Table 2. Comparison of mean Act values of control gene (H19) against unmethylated control gene (GAPDH) and target gene
(FOXAL1) against methylated control gene (H19)

Study H19 mean Act value H19 mean Act value FOXA1 mean Act value FOXA1 mean Act value
groups (I1P) (IN) (1P) (IN)

(ct H19,—ct GAPDHIP) (ct H19,—ct GAPDH 1) (ct FOXALp—ct H19,5)  (ct FOXALy—ct H19,y)
Parous (n = 24) -9.63 0.88 4.15 2.98
Nulliparous (n = 27) -7.94 0.66 6.18 3.96

In MeDIP technique for each reaction, DNA was sonicated into fragments ranging in size from 200-1000 bp and was divided into
immunoprecipitated (IP) and input (IN) portions.
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Fig. 3. Graphical representation of FOXAL primers position. Primers are located in intronl (reverse strand; +73 to +2262 relative to
TSS). Amplified part contains eight gene body CpG sites (+1877, +1894, +1903, +1934, +1941, +1956, +1993, and +2002 relative to
TSS)M. The two CPG islands sequences were extracted from University of California, Santa Cruz UCSC. TSS, transcription start

site; E, exon.

more than GAPDH, as an unmethylated control gene.

The first group was early parous women (n = 24;
mean age = 36.37 years) who had experienced their
first full-term pregnancy under 25 years, and the
second group was nulliparous women (n = 27; mean
age = 31.92 vyears) who had never experienced
pregnancy. All participants in this study were cancer-
free Iranian women. The differences in methylation

levels of studied subgroups are presented in Table 3.
According to Whitney U test results, it was found that
FOXAL relative methylation level in parous group is
significantly higher than nulliparous (p = 0.041), as
indicated in Figure 4. Median of FOXA1 methylation
in parous group was around twofold higher than
nulliparous women (parous and nulliparous women
median = 0.53 and 0.28, respectively).

Table 3. Relative methylation levels among subgroups of study

Variables Number (%)

Relative methylation levels

Median Q1-Q3 p value
Parity status
Early parous 24 (47) 0.53 0.19-1.6 0.041
Nulliparous 27 (53) 0.28 0.09-0.57
Age (year)
<40 41 (80) 0.38 0.13-0.91 0.79
>40 10 (20) 0.34 0.14-0.75
BMI (kg/m?)
<25 24 (47.06) 0.46 0.16-0.84 0.44
25-30 20 (39.22) 0.33 0.17-0.71
>30 7(13.72) 0.08 0.01-0.95
Breastfeeding duration (month)
Non-breastfed 2 (8.33) 0.1 0.01 0.11
<12 1(4.17) 2.6 2.6-2.6
12-24 4 (16.67) 0.35 0.13-0.72
>24 17 (70.83) 0.75 0.37-1.7
Number of full term pregnancies
1 delivery 11 (45.83) 0.54 0.21-2.06 0.56
2 deliveries 13 (54.17) 0.51 0.18-1.19
Smoking
Yes 10 (19.6) 0.30 0.16-1.15 0.66
No 41 (80.4) 0.35 0.13-0.77

p value in bold represents a significant difference in the methylation level of the target regions between/among

subgroups. Q: interquartile range
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Fig 4. Comparison of FOXA1 gene body methylation between
parous and nulliparous groups. FOXAl methylation was
significantly higher in parous group compared with nulliparous
(p =0.041).

We found no association of reproductive
(breastfeeding duration and number of deliveries) and
non-reproductive factors (BMI, age, and smoking) with
FOXAL gene body methylation; the results of these
analyses are displayed in Table 3. Moreover, we did
not observe any correlation between FOXAl
methylation and both age and breastfeeding duration
through spearman'’s correlation test.

DISCUSSION

Early age at FFTP is a known modifiable and a
natural protective factor against breast cancer in
women worldwide. Although this phenomenon was
recognized many years ago™, the exact molecular
mechanisms underlying this effect has remained
unclear. Researchers hope to prevent or postpone the
breast cancer in women at risk such as nulliparous
women by some molecular interventions. This
prevention  policy requires  discovering and
understanding molecular changes that occur with early
parity in normal breast tissue of women and lead to
breast cancer protection.

DNA methylation is a kind of epigenetic change that
can be inducible and stable with a strong link to
lifestyle-dependent features, such as BMI?! and
parity™. Hence, it is possible that these lifelong
epigenetic alterations, which are influenced by
women’s lifestyle, can play a crucial role in the
protective effect of pregnancy[27]. According to
previous studies, the effect of early pregnancy on
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hormone responsiveness of breast tissue, especially
estrogen hormone, is one of the proposed mechanisms
of parity-associated breast cancer protection!.
Therefore, we assume that studying the effects of
early parity on some genes such as ESR1 and
FOXAL, which have important functions in estrogen
responsivenesst’®,  can  improve  the  better
understanding of underlying mechanisms of early
pregnancy associated with breast cancer protective
effect.

In our two previous studies, we showed that ESR1
methylation status has a significant association with
FFTP in the breast tumors, but we did not find this
association in normal breast tissues’?*?“, This result is
consistent with the notion that the malignancy process
can affect molecular status in tumor cells and make
them different from normal cells. Following these
investigations, in the present study, we decided to
focus on the influence of early pregnancy on FOXAL
gene methylation, which is an upstream regulator of
ERS1 gene. Evidence from one study on normal breast
tissue samples of a small group of American women
(19 parous vs. 16 nulliparous) has shown the
association of early FFTP with gene body
hypermethlylation of FOXAlL by MBD-Cap
technique™. In the current study, for investigating
these new findings in a different larger study
population, we evaluated 51 normal breast tissue
samples of Iranian women with another quantitative
epigenetic method (MeDIP-gPCR), which is more
efficient for the investigation of gene body methylation
in comparison with MBD-Cap method!?®!. Our findings
demonstrated that early parity has significant
correlation with gene body hypermethylation of
FOXAL. This finding is compatible with the results
from the previous study!*"’.

FOXA1L is a pioneer transcription factor that co-
localizes with ERa at enhancers in the genome and also
is essential for ERa’s function™. This gene has high
expression levels in luminal progenitor cells of the
normal breast tissue, and their eJ)i%enetic status can be
modified by early pregnancy™®*!. Moreover, it has
been shown that early parity is related to FOXAL
epigenetic modification in epigenome mammary of
mouse models®?. In this case, researchers have shown
that epigenetic modifications increase in FOXA1 gene
during mice gestation, which in turn correlates with
down-regulation of FOXA1 mRNA expression®”.
Thus, according to these findings®™, which are in line
with our results, it seems that FOXALl gene
hypermethylarion is a new candidate epimark that is
modified by early pregnancy in normal breast tissue.
Regarding the protective role of early FFTP against
ERo" breast tumors™® and its influence on

Iran. Biomed. J. 23 (2): 99-106
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methylation status of FOXALl gene (as an upstream
regulator of ERa)™, it can be hypothesized that early
pregnancy may change estrogen responsiveness of
normal mammary tissue and result in protection against
breast cancer.

Epidemiological ~ studies have shown that
reproductive factors such as prolonged breastfeeding
duration and increased number of births can lead to
reduction in the risk of breast cancer”®. Hence, we
attempted to investigate whether these reproductive
factors could alter FOXA1 gene body methylation in
normal breast tissue or not. Regarding our results, there
was no association between these factors and FOXAL
methylation levels. It seems that the protective effect of
lactation and the increased number of births against
breast cancer do not act through the same molecular
mechanisms of early FFTP.

Based on our results, non-reproductive factors such
as BMI, age, and smoking do not have any significant
association with FOXA1 methylation. It seems that
non-reproductive  factors cannot influence the
epigenetic status of FOXAL gene in normal breast
tissue. However, regarding our limited sample size,
these results should be interpreted with caution and are
required to be clarified in future investigations with a
larger sample size.

In conclusion, it seems that early parity, as an
important breast cancer protective factor, can induce
epigenetic changes in normal breast tissue. Also, all
protective reproductive factors perhaps do not have
similar effect on epigenetic status of normal breast
tissue and may reduce the risk of breast cancer through
different mechanisms. Our study provides a new hint
about the association between early FFTP and
epigenetic alterations within gene body of FOXAL in
normal breast tissue. Because of limited sample size
and lack of FOXA1l expression analysis in this
research, more investigation is needed to clarify the
molecular mechanisms underlying this association with
the aim of identifying promising new ways to advance
breast cancer prevention strategies™“.
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