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ABSTRACT

Background: Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective
biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease.
Methods: In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially
expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build
two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with
differential global connectivity related to cancer state were determined for which the potential transcriptional
regulators including transcription factors were identified. Results: The majority of differentially connected genes
(DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have
been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2,
SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by
detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic
cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events. Conclusion:
Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that
the potent candidate biomarkers could provide a link to disease. DOI: 10.29252/ibj.23.1.34
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INTRODUCTION in depicting the etiology of cancers. Rewiring of the

biological networks, to detect differentially co-

olorectal cancer (CRC) is a fatal malignancy
‘ with estimated 1.4 million cases yearly!™l. In

spite of conducting leading researches to
elucidate the molecular processes that advocate the
normal colorectal cells toward cancer, the rate and
average years of survival have not profoundly changed
over decades. Experimental evidence has
demonstrated the function of a certain number of
genes such as HMGA1, TACSTD2®?, sLcea4l!
coL3A1M™, ITGA2E!, TXNDC17!", and PPP2RSAL
in CRC. Although the association of genes in CRC has
been presented in a number of research works®¥,
employing robust algorithms in network mining and
topology analysis offers an unprecedented opportunity

34

regulated (DRGs) and co-expressed genes (DCG),
could simplify the network’s components observation
and assist to depict the relationships between
interconnected genes. Gene co-expression networks
enable to highlight molecular mechanisms underlying
diseases™™ and can be accounted as an efficient way to
assess CRC. Generally, tools designed for recovering
gene regulatory interactions rely on similarity matrices
indirectly measured by correlation matrices or mutual
information. These matrices usually include many
indirect links that should be identified and removed for
increasing the reliability of gene regulatory network
(GRN) inference algorithms. Hence, several
sophisticated approaches have attempted to remove
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indirect interactions and to detect the causal
relationships between gene pairs. Differential co-
expression analysis aids to detect gene with different
connectivity in the disease state and offers a powerful
approach for elucidating transcriptome patterns and
dysfunction of gene expression underlying phenotypic
changes™. A plenty number of differentially co-
expression network methods have been proposed in the
literature™ ™). For instance, DCGs and links (DCGL)
attempts to identify DRGs and its links (DRLs) by
comparing the expression datasets of disease and
normal states*?. Weighted gene co-expression
network analysis (WGCNA) is a relatively new
statistical method not only infers correlation patterns
between two genes but also covers neighborhoods
across expression datal™!.

In this work, instead of DRGs, we focused on genes
with differential connectivity in cancer state versus
normal condition. These genes, indicating hubs within
the network, supposedly to be key units controlling a
wide range of essential cellular functions in a specific
process like cancers. Thus, the presence of potential
differential interactions through CRC genes expression
datasets has been investigated. We mainly aimed to
uncover the mediated relationships between genes
using in silico approaches. The differentially expressed
connected genes and molecular pathways, which we
previously thought to influence the pathogenesis of
CRC, were subsequently prioritized.

MATERIALS AND METHODS

Used datasets and pre-processing

In this work, we collected samples of normal human
colorectal mucosa and adjacent CRC of four
independent whole genome expression series (single-
color Affymetrix Human Genome U133 Plus 2.0
Array). After a comprehensive search in NCBI Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/gds/?term=), series with accession numbers
GSE4183™  GsEge71M™,  GSE9348”%,  and
GSE18105™ consisting of 84 normal and 210 CRC
cases were collected. Raw CEL files of these samples,
based on the platform of GPL6244, were normalized
with robust multi-array average (RMA) expression

[22] . .

measure*~ method by using the linear models for
microarray data (LIMMA) R package®! (R software v.
3.2.5). After removing ambiguous probes, the extracted
probe IDs were transformed into 21654 unique and
validated official gene symbols. After normalization,
differentially expressed genes (DEGs) were identified
between cancer and normal mucosa if the expression
level alteration was above the defined threshold (fold-
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change >2.0 or <0.5 and adjusted p value <0.01) by
employing LIMMA R package. The defined threshold
prevents withdrawing genes with lower differential
alteration.

Assessing regulatory interactions and topological
analysis

The expression values of mutual DEGs among the
GSE4183, GSE8671, GSE9348, and GSE18105 series
were used to construct two independent GRNs, one
from 84 normal samples and another from 210 CRC
samples, by employing Graphical Gaussian Models
(GGM), as implemented in GeneNet R package®. To
cover all of the mutual DEGs between control and
CRC samples and more sparsity, only the 1500 top
ranking edges were visualized in Cytoscape (v. 3.4.0).
Using Cytoscape’s built-in Network Analyzer, we set
the nodes with higher degrees and betweenness with a
darker shade and bigger size, respectively. In order to
analyze the topology of two independent constructed
GRNs, betweenness centrality (the percentage of times
a node appears on the shortest path between all pairs of
nodes in the network), as a network centrality
parameter, was calculated. Genes with higher
betweenness centrality score, as globally connected
genes, were then identified, through the CytoNCA=3.
Globally connected nodes were determined if they
were in the top 40% of betweenness centrality score
distribution; genes ranked between top 1-40%. Based
on Yu et al.'s®® report, the selection of genes in the
range of 10-40% of this distribution did not have a
significant effect on the results. These genes thereof
were remarked as differential connected genes
(DCGs) between normal and CRC conditions.
Afterward, in order to extract transcription factor (TF)-
gene regulatory interactions among the DCGs, a list of
9905 regulatory links between human gene TF was
obtained from TRRUST database®”). These regulatory
connections were collected from 11,237 over 20
million PubMed articles and experimentally validated
transcriptional regulations consisting of 821 human
TFs and 2,159 target genes of TFs.

Pathway, gene ontology (GO) enrichment, and
expression pattern analysis

Mutual DEGs were separately classified by utilizing
KEGG™ to underIP/ing pathways and to GO molecular
labels by Enrichr®®. DCGs were finally fed into
pathwAX web server to find a network crosstalk of
significant pathways. PathwAX contains KEGG
pathway information in addition to networks of gene-
gene links in model organisms. The expression patterns
of DCGs was ultimately sought by GEMMA
database®!). To examine the extent to which the DCGs
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are CRC specific in contrast to being generally
expressed in several cancer types, we obtained DEGs
from bladder, breast, colon, esophagus, kidney, liver,
lung, skin, ovary, prostate, sarcoma, and thyroid
cancers with accession numbers GSE115451%
GSE20437 GSE25071PY, GSE34619%°, GSE2
0602, GSE49515°%7), GSE43346*), GSEE887,
GSE14407"% GSE45016"Y,  GSE2719"4,  and
GSE530721% respectively. As described before, the
threshold cut-off of fold-change >2.0 or <0.5 and
adjusted p value < 0.01 was employed to extract DEGs
in 12 cancer types. The power analysis of the selected
genes was conducted by calculating the survival time
statistics based on the log-rank test and visualized as
Kaplan-Meier survival curve!*.,

80 1
70
60 A
50 A
40 A
301
20 1
10 4

Genes (%)

RESULTS

Differential expression of CRC-related genes across
healthy mucosa and adjacent tumor tissues

Our major criteria for selecting the four
aforementioned expression arrays was the avoidance of
pooling transcriptome data of cell lines, in vitro assays,
or gene expression measurement under any treatment.
Genes whose expression level in normal colon mucosa
displayed 2> or < 0.5 fold-change at adjusted p value
<0.01, in comparison to tumour tissues, were selected
as statistically significant DEGs. The range of
DEGs through these series was unequal from 392
genes in GSE4183 to 11591 in GSE18105 (Fig. 1A). In
addition, among the expression values of DEGs among
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Fig. 1. Differentially expressed genes (DEGS) in colorectal cancer-associated datasets. (A) The distribution of DEGs as well as up-
and down-regulated genes in four used CRC experiments. The bars have been arranged to illustrate the percent of genes assigned to
each experiment. (B) Venn diagram of intersection among the expression values of DEGs across GSE4183, GSE8671, GSE9348, and
GSE18105 series (absolute log fold-change >1, absolute log fold-change <0.5, and adjusted p value <0.01). Ultimately, 154 genes

were taken as mutual DEGs among these datasets.
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GSE4183, GSE8671, GSE9348, and GSE18105 series,
154 genes were identified as mutual DEGs (Fig. 1B).

As shown in Fig. 2A, gene products of mutual DEGs
were enriched in significantly over-represented GO
molecular  relevance, including cytokine and
chemokine processes, in addition to tumor necrosis
factor (TNF), oligomerization domain (NOD), and
epithelial cell signaling pathways (Fig. 2B).

Networking of CRC-associated datasets

Here, we employed R implementation of GGM as
GRN inference algorithm to recognize and remove
indirect links between shared DEGs. To this end, we
reconstructed two independent GRNs, from 84
normal and 210 cancer cases, but both of GRNs were
composed of the same expression values of 154

Chemokine activity (GO:0008009)
CXCR chemokine receptor binding (GO:0045236)
Interleukin-8 receptor binding (GO:0045236)

Histidine histamine antiporter activity (GO:0070907)

mutual DEGs across healthy and diseased conditions.
To cover all the 154 nodes and more sparsity, we only
selected the 1500 highly ranked edges between
mutual DEGs (Fig. 3). In order to identify genes with
differential connectivity in CRC, by exploiting
CytoNCA Cytoscape plugin, 40% of the top globally
connected genes (a number of shortest paths with
other nodes namely betweenness) from CRC and
normal  networks were selected separately.
Betweenness  characteristic, as a  centrality
measurement, indicates how significant a node would
be in healthy and diseased GRNs. Identifying the
central nodes by these measures seemingly provides
genes that modulate responses to various cellular
conditions. From 154 mutual DEGs in each of CRC
and healthy GRNs, 61 genes (40%) were selected
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Fig. 2. Enrichment analysis of differentially expressed genes (DEGS) in colorectal cancer datasets. (A) Functional classification of
biological processes; (B) biological pathways in which mutual DEGs are involved by Enrichr and KEGG databases, respectively with
default setting. The bars have been arranged top to down illustrating the number of DCGs, and significance level assigned to each GO

molecular terminology and biological pathway.
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(A)

Fig. 3. Reconstructing two independent differential regulatory networks using normal colorectal mucosa and adjacent tumor tissues,
by utilizing the expression values of mutual differentially expressed genes (DEGSs) across datasets. (A) Cancer and (B) healthy
transcriptional regulatory networks derived by GGM algorithm. Using NetworkAnalyzer Cytoscape plug-in, degree and betweenness
parameters have been mapped to node size and color so that darker and bigger nodes show higher degree and betweenness centrality.

based on their importance in the network by
calculating the betweenness as centrality parameter.
From these 61 genes, 21 genes indicated an overlap in
two GRNs that were removed from the analysis as we
strictly wanted to evaluate the genes that are ranked in
the network by connection type variations. Ultimately,
40 genes with more relevance to CRC were selected
for further analysis as DCGs.
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Filtering the CRC-related candidates across
experts-curated databases

For the identification of CRC-related candidates
among the DCGs, we intersected the DCGs with two
lists of genes: 1572 genes from Network of Cancer
Genes (NCG) databasel®! and 3265 CRC associated
genes from DisGeNET v. 2.0 database.
Consequently, INHBA, FOXQ1, MET, SLC16A4,
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SOX9, and MET were found to be common genes (Fig.
4A). DisGeNET contains a list of diseases-associated
genes collection based on the presence of genetic
overlaps between diseases collected from UNIPROT,
human CTD, PsyGeNET, Orphanet, and the HPO.
From this collection, only genes with at least one
evidence from Pfam 31.0 were selected for
intersection. Lower coverage of DCGs with NCG
genes (17.5%) fuels the efforts in the validation of
DCGs associations with CRC by experimentalists. The
expression pattern of DCGs was finally checked in 33
transcriptomic experiments via GEMMA database.
The expression pattern analysis through several CRC
transcriptome datasets exhibited the up-regulation of
the majority of DCGs. Expect for ZNF575, STMN2,
SPPL2A, SLC26A2, PHYKPL, PHLPP2, LRRC19,
FRZB, DHRS1, and CCDC68 with a relative down-
regulation (fold-change <2 at p values 0.01-0.005), the
rest of DCGs indicated up-regulation (fold-change >2
at p value 0.01-0.005), as indicated in Figure 5.

Identifying biological regulators of differentially
connected genes in CRC

The complex molecular interactions underlying
cancer genesis warrants the identification of biological
entities viz. Therefore, inferring regulatory links
between TFs, as transcriptional regulators, promisingly
will reveal interesting aspects of DCGs. In the next
step, we sought potential TFs associated with a circuits
of 40 arbitrary DCGs obtained by TRRUST database.
Among the DCGs, ABCC1, BACE2, CXCL1, DDX21,
ITGA2, MMP7, SLC7A5, SOX9, STMN2, and TGFBI
were found to be regulated by 30 TFs, mainly in an
activating way. Except for the CXCL1, MMP7, and
SOX9 that were regulated by 8, 9, and 10 TFs,
respectively (SP1 TF was the common regulator of
MMP7 and SOX9), the rest of DCGs were being
regulated by distinct TFs. However, SP1, JUN, and
SF1 TFs regulated more than one DCG, and the rest of
TFs acted as a regulator of just one DCG (Fig. 6).

Expression pattern of selected genes across
different cancer types

DCGs were compared to statistically significant
DEGs from 12 cancer types (bladder, breast, colon,
esophagus, Kkidney, liver, lung, skin, ovary, prostate,
sarcoma, and thyroid cancers) to identify the extent to
which DCGs are CRC specific (supplementary S 13-1,
13-12). It would be a strong support if DEGs identified
in this study are specific to CRC, then it shows that the
computational methods have likely discovered CRC-
associated biomarkers correctly. For this purpose, we
took the intersection of DEGs obtained from each
cancer type and DCGs separately enriched the shared
genes to biological pathways (data not shown). Liver
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and skin (>80%) as well as lung, prostate, sarcoma,
and esophagus cancers (<20%) shared the most and the
least genes with DCGs, respectively (Fig. 7). The
shared genes principally enriched in cytokine and TNF
signaling (bladder, breast, colon, Kkidney, liver,
melanoma, and sarcoma), epithelial cell signaling,
carbon metabolism (esophagus, lung, prostate, and
thyroid), and PI3K-Akt signaling pathway (ovary). As
the most cancers shared a few number of genes with
DCGs, the finest explanation could be the roughly
specific roles that the DCGs play as central nodes in
CRC by mediating in PathwAX-derived pathways like
extracellular matrix (ECM)-receptor interaction and

(A)

(a) 2778
(63.49%)

/e

(10.7%)

(0.5%)

=]

MET

SOX9 (c) 1093
SLC16A4 (24.9%)
INHBA
FOXQ1

Fig. 4. Characterizing a network of differentially connected
genes (DCGs) along with topology feature analysis. (A) Venn
diagrams of a, 3265 gene from DisGeNET database; b, DCGs; c,
1572 genes from Network of Cancer Genes (NCG); five genes
were taken mutual colorectal cancer-associated genes. (B)
Regulatory interactions of DCGs, using NetworkAnalyzer
Cytoscape plug-in, degree and betweenness parameters have
been mapped to node size and color so that darker and bigger
nodes show higher degree and betweenness centrality.
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Fig. 5. Expression profile of differentially connected genes (DCGs) across 32 colorectal cancer transcriptome datasets by GEMMA
database. Dark purple, light purple, dark green, and light green show up-regulation >2 at p value 0.005, up-regulation >2 at p value
0.01-0.005, down-regulation < 2 at p value 0.005, down-regulation >2 at p value 0.01-0.005, respectively.

synaptic vesicle cycle (Fig. 8). In sum, CXCL3,
SLC7A5, SLC26A2, GART, and CCDC68 genes were
differentially expressed in three or more cancer types
(Table 1).

Validating the differentially connected genes by

power analysis
Since having been differentially expressed in cancer

40

state in comparison to normal tissues, 14 DCGs can
represent potential genes for CRC prognosis. We
therefore checked the importance of 14 DCGs in CRC
progression by plotting Kaplan-Meier survival curves.
The survival curves was plotted by feeding DCGs in
Kaplan Meier-plotter. As a result, the DCGs were
predictive of CRC at p value = 0.004 with hazard ratio
of 2.81 (Fig. 9).
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Fig. 6. Potential regulators of differentially connected genes (DCGs). The distribution of transcription factors that
modulate the expression of DCGs based on TRRUST database.

DISCUSSION

By capturing the molecular roadmap underlying
human diseases, systems biology paves the path to
better understanding of diseases mechanism, biomarker
identification and drug discovery. CRC is still the
major causes of cancer death worldwide; hence,
discovering a system of biomarkers triggering the
initiation and progression of CRC is a challenging
topic in cancer biology™”. The identification of co-
expressed genes related to cancers presumably
provides new insights in networks underlying cancers.
In other words, a combination of gene effects likely
holds promise as a more effective approach for
detecting  disease-associated  genes*®. In fact,
examining co-expressed genes in contrast to the
individual genes, could be more informative to explore
new biomarkers”®*%.  Hereby, varied correlation
between two genes in distinct states such as healthy
and diseased conditions is recovered as differential co-
expression. As the correlation between two genes may
alter free from the expression levels of two genes,
transcriptome analysis exclusively based on the
differential transcript profiling impedes the structured
description of regulatory patterns®. Several studies
have therefore conducted differential co-expression
analysis to facilitate the deconvolution of cellular
networks in cancers®**¥. In the present work, freely
available data sources and bioinformatics tools have
been exploited to infer DRGs whose interactions
hypothetically promote colorectal cancer. Furthermore,
attempt was made to disclose the likely relevant

Iran. Biomed. J. 23 (1): 34-46

molecular pathways implicated by central nodes
through a network of these genes. To increase the
statistical power, we performed a meta-analysis,
combined of multiple Affymetrix experiments. On the
other hand, to decrease the experimental specific batch
effects, each experiment was processed independently.
Of note, we focused on the colon mucosa samples from
which nearly all CRC starts. Consequently, 154
statistically significant mutual DEGs across the healthy
mucosa and adjacent tumor tissues were extracted
that overrepresented with chemokine and cytokine
processes, signaling pathways, and transporters. In this

Thyroid | ———————————
Sarcoma |
Prostate |

Cancer types

0 5 10 15 20 25 30 35
Shared genes

Fig. 7. The expression pattern of differentially connected
genes (DCGs) within the statistically significant differentially
expressed genes (DEGS) across different cancer types (absolute
log fold-change >1, absolute log fold-change <0.5, and adjusted
p <0.01). The bars have been arranged to illustrate the number
of genes shared between DCGs and each cancer type.

41


http://dx.doi.org/10.29252/ibj.23.1.34
https://dor.isc.ac/dor/20.1001.1.1028852.2019.23.1.5.5
https://ibj.pasteur.ac.ir/article-1-2438-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-22 ]

[ DOR: 20.1001.1.1028852.2019.23.1.5.5]

[ DOI: 10.29252/ibj.23.1.34]

Differential Connectivity in CRC Izadi
Pathway class Significant pathways
B Environmental information processing 1
[ Cellular processes 1
[] Organismal systems 1
Pathway (enriched/depleted) FWER Network connectivity of query genes (pathway gene)
ECM:-receptor interaction 2.44e-2 e B
- ABCCA nuxﬁlm;:m RCN1  SLCTAS ":.J;m
Cell Cy_Cle ) 3.34e-2 20 links 26 links 161inks 3 links 1 link 7 links
Synaptic vesicle cycle 3.53e-2 ABCC1  STMINZ AIFsA2 SLCTAS GART
23 links 3 links 20 links 1link 1 link

Fig. 8. PathwAX results for the differentially connected genes (DCGs) in the colorectal cancer datasets. The Table and Pie chart
summarize the pathway distribution. The Table shows enriched (blue) and depleted (red) pathways at g value of 0.05 as defined cut-off

threshold. Darker shades in colored boxes within the table indicate higher connectivity (links) that a query gene has.

context, we reconstructed two independent GRNs by
employing GGM algorithm, using the expression
values of 154 mutual DEGs. GGM algorithm
produces a high-fidelity representation of the cellular
network topology as a graph by recognizing
regulatory  interactions  from  non-regulatory
interactions and removing non-causal links. Indeed,
the casual impact of a TF on its target genes is being
inferred. The critical idea behind this algorithms is
the modeling of partial correlation as a measure of
independence of any two genes. The assumption of
inferring gene network using GGM algorithm is that
the selected 154 genes are in the same pathway (or
network), and they are interacting and regulating each
other. However, based on the definition of DEG, these
154 genes are not necessarily related to each other. The
expression correlation observed may be due to indirect
regulation. In this context, the betweenness analysis
will highlight genes that being regulated by the most
number of other genes, and those genes with least
number of connections are true important regulators.
Then two inferred GRNs were topologically
analyzed to find DCGs. To achieve this, 61 genes,
by in rank ordering of betweennees centrality scores,
were selected from which 21 genes were shared
through normal and cancer GRNs that removed from
further investigation. Finally, 40 genes were selected
as potential key connectors considered as DCGs
specific to cancer samples. Within a network, DCGs,
FRZB, SOX9, MMP7, and WDR78 were ordered as
the highest strongly connected genes; all up-
regulated across different CRC transcriptome
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experiments in GEMMA database (Fig. 5). Pathway
annotation is usually performed by taking overlap of
a gene set with a pathwa%/ that increases false
positives and false negatives™”. However, PathwAX
web server in addition to network crosstalk
enrichment can perform depletion analysis. A
significant depleted pathway suggests that the links
between genes is not much significant to be affected
by a certain pathway. Here, DCGs were enriched
with ECM-receptor interactionby ITGA2 and TGFB1
and synaptic vesicle cycle by GART, ABCC1, STMN2,
EIF5A2 and SLC7A5, while cell cycle pathway
depleted significantly at q value of 0.05 (Fig. 8). ECM-

Table 1. The expression pattern of DCGs across different
cancer types

Cancer Expression Fold-
Shared gene type pattern change
CXCL3 Breast Up <2
SLC7A5 Bladder Up <2
SLC26A2 Sarcoma Down >2
Thyroid
Prostate
Ovary Up <2
GART Melanoma
Lung
Liver >2
CCDC68 Kidney Down
Esophagus
Colon

Up, upregulation; Down, downregulation
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Fig. 9. Power analysis of differentially connected genes
(DCGs) in colorectal cancer datasets and Kaplan-Meier analysis
of colorectal cancer dataset using the DCGs. The p values are
computed using log-rank.

receptor proteins have been dysregulated in the
progression from an isolated tumor to metastatic
phase®® and shown to be related to CRCF®!. This is
likely emphasizing the role of DCGs in CRC
invasion by disseminating the tumor to secondary
sites of body. Screening the DCGs across 12 cancer
types (bladder, breast, colon, esophagus, Kidney, liver,
lung, skin, ovary, prostate, sarcoma, and thyroid
cancers), suggested that these genes could be
speculated as metastatic-related genes as DCGs-
shared GART and SLC7A5 with 12 tumor types. The
over-representation of DCGs across multiple cancer
types with cytokines suggests the explosion of
inflammatory events as a similarity among these
cancers. DEGs extracted from 12 cancers types shares
pathways with DEGs such as cytokines, metabolism,
and signaling pathways. Therefore, DCGs likewise are
oriented to distinct cascade running the CRC
metastasis, while cell cycle is depleted with DCGs.
Thus, the specific roles of DCGs in CRC seemto be
triggering the metastasis in contrast to their common
roles as mediators in TNF, epithelial cell signaling,
metabolism, and transportations that was shared with
different cancer types.

To evaluate whether the DCGs have any relevance
to diseases, we obtained an intersection of DCGs
with DisGeNET genes, thereof 11 DGCs (25%) were
found to be shared with CRC-related genes in
DisGeNET. In fact, this amount of similarity highlights
the DCGs with higher ranks in centrality measure,
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which potentially play remarkable roles in CRC
compared to the other genes. However, the low
amount of coverage of DCGs with experimentally
validated NCG suggests potential unknown genes
related to the CRC as targets for future studies. The
DCGs were regulated with distinct TFs from which
SP1, SF1, and JUN were found to regulate the
majority of DCGs. MMP7, SOX9, and CXCL1
found to be regulated by diverse TFs with SP1 as a
common regulator (Fig. 6A). This observation may
imply that TFs play specific roles in modulating
highly interconnected nodes in CRC network.
MMP7 and SOX9 are shown to be nodes with the
highest connectivity in DCGs (Fig. 4B). MMP family
has proven to act in metastatic phase by degrading
ECM structures, thus paving the way for the cells
through the dense environment™®". Interestingly,
SPA1 was the regulator of DCGs implicated in EMC-
receptor like ITGA2, ABCC1, and SLC7AS. Integrins,
including TGA5, ITGA5, ITGB5, ITGAll, and
ITGBL1 elevated in cancer tissues. In accordance with
our study, ITGA2 showed up-regulation of 2> fold.
Spl has been acknowledged to enhance or repress gene
expression that in turn plays pivotal roles in metastasis
of various tumors®®>, Keeping with this analysis, SP1
is likely implicated in CRC progression by regulating
EMC components like SLC7A5. It has also been
recovered as mutual differentially expressed in 12
screened cancers.

We aimed to delineate prognostic biomarkers
underlying CRC; therefore, in the frame of in silico
analysis, a certain number of genes were explored
whose reciprocal interplays are supposedly associated
with CRC. Taken together, interactions of these genes
which majorly occurred through the metastatic cascade
could be considered as the mediators of CRC
aggression. Indeed, the identifying these genes exhibits
the importance of network topology analysis to rank
more important genes as disease-related biomarkers
against a set of exclusively DEGs in a meaningful
way. These ranks measure the relative importance of
a protein in a biological network and could identify
strongly correlated genes with specific states.
However, this analysis is challenged by the
disadvantage of inevitable overestimation in
computational approaches; thus, applying more
stringent parameters in predicting the regulatory links
would be apparently helpful in acquiring more reliable
results and overcoming any inaccuracy coming from
the nature of reverse engineering methods. Moreover,
we employed unweighted networks during GRN
reconstruction and topology analysis. We then
should be cautious about dynamic nature of cancers
via strictly analysis of statics networks.
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The main goal of this analysis was exploiting
differential connectivity that is thought to rank the
influential genes in the pathogenesis of CRC.
Utilizing gene expression data with pooling
information of TFs in cancers can help to discover
crucial findings to identify underlying mechanisms and
enlighten more molecular underpinnings of different
cancers. We observed that the identified genes and
TFs are mainly guided to cytokine signaling pathway
and metabolism implicated in CRC. To summarize,
selected genes viz. GART, TGFB1, ITGA2, SLC16A5,
SOX9, and MMP7 with differential connectivity across
normal and CRC samples along with SP1, SF1, and
JUN TFs could be taken into account for future
detection and therapeutic targets by experimental
investments.
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