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ABSTRACT

Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths
worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental
and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with
Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an
essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/B-catenin
signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor
receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during
embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of
GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of

cell signaling pathways may help to develop new therapeutic targets for GC. DOI: 10.22034/ibj.22.4.217
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INTRODUCTION

G astric cancer (GC) is one of the most common
and lethal cancers worldwide. More than
950,000 new cases are diagnosed annually™".
The incidence of GC is higher in Eastern Asia, Eastern
Europe, and Southern America than Northern America
and Northern Africa™. In Iran, GC is prevalent in
northern and northwestern regions, and men are twice
as likely to be affected than women®!. GC is the fourth
most common cancer (after lung, prostate, and
colorectal cancers) in men and the fifth most common
cancer (after breast, cervical, colorectal, and lung
cancers) in women globally™. Despite the declining
rate of GC incidence and advances in diagnosis, GC
causes more than 700,000 death annually, and a five-
year survival rate is nearly 20%%.

Gastric adenocarcinoma has recently been classified
genetically to four molecular subtypes, including
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chromosomal instability, microsatellite instability,
genome stable, and Epstein-Barr virus-positive!.
There are two main histological types of GC consisting
of intestinal and diffuse types. Development of the
intestinal type includes the transformation of normal
mucosa to the similar mucosa of the intestinal
epithelium. These series of mucosal alterations are
triggered by chronic inflammation (gastritis), which
eventually leads to metaplasia, dysplasia, and cancer.
The diffuse type appears as single-cell that changes in
the mucous neck area of gastric glandst. Thirty to
50% of the diffuse types are caused by either point or
small frameshift mutations in CDH1 gene, which
encodes E-cadherin and plays an essential role in cell
adhesion!®.

Some of the main risk factors of GC are summarized
in Table 1, including Helicobacter pylori infection
and atrophic gastritis, tobacco smoking, dietary
salt and food preservation, pernicious anemia, and
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Tablel. GC risk factors

GC risk factor

Explanations

Reference

H. pylori infection

Smoking

E-cadherin gene

Pernicious anemia

Diet

Epstein-Barr virus (EBV)

Most important risk factor, long-term infection, leads to chronic atrophic
gastritis and pre-cancerous alterations. The international agency for research on
cancer (IARC) classified H. Pylori as the first class carcinogen. People with GC
have a higher rate of H. pylori infection.

Smoking increased the risk of GC. Studies have reported that smokers have
higher hazard ratio in GC in cardia (2.86-4.10) compared with the distal region
of stomach (1.52-1.94).

Hereditary diffuse GC caused by the mutation in CDH1 gene encodes E-
cadherin.

People with Pernicious anemia have increased the risk of GC. More studies are
needed to confirm this condition.

Diet play important role in prevention and development of GC. Salt and salt-
preserved foods increased the risk of GC. Intake twice or more of fruits and
vegetables in a day decreased the risk of GC.

5% to 10% of GCs are associated with EBV. Its mechanism is DNA
methylation (gene silencing).

[105]

[106]

[107]

[9]

71

[108]

abnormalities in E-cadherin genel®.. The aim of this

development, differentiation,

proliferation, and

review is to summarize several important signaling
pathways in GC, which helps to have a better
understanding of GC biology.

Molecular pathways of GC

There are several cell signaling pathways playing a
role in gastric carcinogenesis. Here, we review
different cell signaling pathways that are involved in
GC tumorigenesis, highlighting either the expression
pattern or contributed mutations in related genes.

Hedgehog (Hh) signaling pathway
The Hh signaling pathway is important in embryonic
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maintenance of some adult tissues. Ligands of this
pathway in mammals include Sonic, Indian, and
Desert. In the absence of these ligands, the
transmembrane  receptor ptch inhibits another
transmembrane protein (smoothened [SMO]), resulting
in deactivation of Hh pathway. By binding ligands to
the ptch receptor, the inhibitory effect of patch is
eliminated from SMO, and SMO activates the
downstream transcription factors, including GLI
(GLI1, GLI2, and GLI3) proteins. Then GLI
translocates to the nucleus and activates Hh-related
target genes™™ (Fig. 1).
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Fig. 1. Hh pathway in Hh signaling. In the absence of ligands Ptch inhibits SMO and then inactivates the signaling pathway (a). (b)
In the presence of ligands, ligands bind to the Ptch, and the activation of SMO and signaling pathway occurs (b).
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In the gastrointestinal tract, where epithelial cells are
continuously  replenished  from  progenitor cell
populations, Hh signaling appears to be essential for
restoration. During GC processing, chronic H. pylori
infection causes mucosal damage. Furthermore, the
overexpression of sonic Hh has been detected in
progenitor cells (in gastric mucosa), which restore the
damaged  gastric  mucosa™.  In  addition,
overexpression of GLI1 was correlated to the lymph
node metastasis in esophageal squamous cell
carcinoma (ESCC) patientsi*?. The expression changes
of this pathway in GC are summarized in Table 2.

Wnt/g-catenin pathway

Wnt proteins are cysteine-rich glycoproteins that
bind to the extracellular domain of frizzled receptor
and lipoprotein receptor-related protein 5/6. Wnt
signaling regulates different cellular processes,
including cell fate, movement, polarity, and
organogenesis. There are three types of Wnt pathways.
The first is canonical or B-catenin-dependent pathway
that involves in the stabilization of the proto-oncogene
B-catenin. The second is planar cell polarity pathway
that involves in cell ciliogenesis. The last is Wnt/Ca2+-
dependent pathway that stimulates the intracellular
release of calcium and activates Ca2+-dependent
mediators controlling cell movement and behavior. The
planar cell polarity and Wnt/Ca2+ pathways are
collectively called either non-canonical or B-catenin-
independent pathway!®!.

In the absence of Wnt, GSK3 in APC complex
(including APC, AXIN, CK1, and GSK3)
phosphorylates p-catenin, which in turn leads to the
degradation of pB-catenin in proteasome complex.
Binding of Wnt ligand to the frizzled receptor inhibits
GSK3 activity through dishevelled, resulting in
dephosphorylation and stabilization of the [B-catenin.
Therefore, B-catenin accumulates in the nucleus, and

Table 2. Hh pathway

its interaction with the T-cell factor/lymphoid enhancer
factor (TCF/LEF) transcription factor family stimulates
the transcription of Wnt target genest. Two signaling
pathways, including nuclear factor (NF)-kB and
Wnt/p-catenin are dysregulated in 70% of the GC
patients™. Wnt pathway is a key element in cell
proliferation during both normal and cancerous gut
development. SALL4, as an embryonic stem cell
marker, has a direct interaction with Wnt signaling. Its
overexpression is correlated with lymph node
metastasis in GCI®. Furthermore, overexpression of
SALL4 and SOX2, members of the sex-determining
region Y-related high-mobility group (HMG), are
observed in ESCC, and the expression levels of these
two genes are correlated with each other™™. The
overexpression of SALL4 has also been detected in
patients with colorectal cancer, and its overexpression
is associated with the grade of tumor cell
differentiation and tumor cell metastasis to the lymph
nodel’®. Some of the genetic alterations of this
pathway are summarized in Table 3.

H. pylori infection dysregulates Wnt signaling
pathway. CagA, the most important virulence factor of
H. pylori, causes the activation of the p-catenin
through an independent phosphorylation manner.
CagA interacts with E-cadherin, leading to B-catenin
accumulation in cytoplasm and nucleus. Moreover,
CagA transactivates CDX1 and P21 genes that are
involved in the intestinal differentiation of gastric
epithelial cells™. VacA, another H. pylori virulence
factor, induces Wnt/B-catenin signaling through the
activation of PI3K/Akt pathway, resulting in
phosphorylation of GSK3p and translocation of the [03—
catenin to the nucleus to activate CCND1 gene!®”.
Moreover, H. pylori infection increases the expression
levels of Oct4 and Nanog, two cancer stem cell (CSC)
markers, through Wnt signaling that promotes CSC-
properties in GC cells®?.

Up-regulated genes Explanations Reference

SHH, PTCH, and GLI1 Up-regulation of these genes is observed during H. pylori infection in GC cells. 111
CagA-positive H. pylori was correlated with the higher expression of SHH.

PTCH1, SMO, and GLI Overexpression of these genes is documented in diffuse types of GC. Expression of [209]

Shh and Ihh Shh and Ihh is detected in the intestinal type of GC.

GLI1 The up-regulation of Glil and down-regulation of SuFu have been reported in GC [110]
tissue. Glil overexpression is correlated with aggressive phenotype.

SHH SHH overexpression is related with age, tumor differentiation state, T staging, and N [t
stage in GC. In another study, SHH expression is correlated with lymphatic metastasis
and poor prognosis. Furthermore, in xenograft of human GC, the up-regulation of
SHH significantly enhances the incidence of lung metastasis.

SHH, PTCH, and GIi3 The expression of these genes increases in CD44+ and CD24 + subpopulation, which [112]
is comparable with the CD44—CD24—subpopulation.
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Table 3. Genetic alteration of Wnt pathway

Gene Genetics alteration Explanation Reference

Wnt-1 Up-regulated [113]

Wnt-2 Up-regulated The overexpression of WNT2 is correlated with cytoplasmic/nuclear 1141
B-catenin accumulation in both intestinal- and diffuse-type ofr GC in
Chinese people. Moreover, the expression of WNT2 positively is
correlated with lymph node metastasis.

Wnt-5 Up-regulated Its expression is correlated with poor prognosis. [225]

Fzd-3 Up-regulated Its overexpression is correlated with the activation of Wnt signaling [116]
in GC.

CTNNB1 Mutation Mutation in the gene (CTNNB1) is found in diffuse and intestinal (17
type of GC.

TCF7L2 Somatic frame shift mutation Somatic frame shift mutation is detected in GC with microsatellite [118]
instability.

APC Mutation Mutation and deletion [119]

Sox10 Down-regulated Sox10 is a transcription factor that regulates Wnt signaling. [120]

WNT10A Up-regulated H. Pylori infection induces this overexpression. [121]

Transglutaminase (TGM) family plays an essential
factor in drug resistance and progression of cancers.
The expression level of TGM1, a member of TGM
family, is elevated in GC that indicates TGM1
participation in the development of this disease.
Moreover, the reduced levels of TGM1 in GC cells
result in the suppression of Wnt signaling activities.
This result suggests that the TGM1 may function in GC

by affecting Wnt signaling pathway?.

Cell cycle

Dysregulation of the cell cycle components is a
defining factor in gastric tumorigenesis. Activation of
the cyclin-dependent kinase (CDK) results in cell cycle
progression. Cyclin D1 and cyclin D2 are up-regulated
in GC™®. Furthermore, cyclin D1 is up-regulated in co-
cultured GC cells with H. pylori infectionl®],

Tp53, the guardian of human genome, is a tumor
suppressor gene that is commonly mutated in all types
of human cancer. TP53 gene mutation is observed in
GC™). Moreover, P21Waf1/Cip1, as a target for p53,
binds to cyclin A-CDK2 and cyclin D1-CDK4
complexes and inhibits their function. Loss of
P21Waf1/Cipl expression has been reported in the
60% of GC tissues. Moreover, the underexpression of
P21Waf1/Cipl is correlated with tumor invasiveness
and metastasis, as well as poor prognosis in GCP®.
Besides, down-regulation of p27Kipl, a CDK
inhibitor, has been observed in GC, and its down-
regulation is correlated with advanced stages and
invasiveness of the tumort?”.

P16 is a regulator of cell cycle that causes G1 phase

220

arrest by the inhibition of CDK4 and CDK®6. The
expression of P16 is observed in tissues and serum of
GC patients, while its expression is not detected in
normal tissues and sera. P16 DNA methylation can be
used as a serum biomarker for early detection of
cloi)

Notch signaling

Notch signaling is an important pathway in
tumorigenesis  through the regulation of cell
proliferation, apoptosis, and differentiation. Jaggedl is
a ligand of Notch signaling. After binding Jaggedl to
the Notch receptor, Notchl receptor intracellular
domain is cleaved by matrix metalloproteinase (MMP)
and y-secretase and consequently translocates into the
nucleus to activate transcription machinery!?”.

H. pylori infection can induce Notch signaling.
Moreover, jaggedl expression is associated with
aggressiveness of GC. Notch signaling induces
expression of the cyclooxygenase-2 (COX-2) through
the binding of the Notch1 receptor intracellular domain
to the Cox-2 promoter, which results in GC
progression®. The expression of Notch1 is detected in
human GC, especially in well-differentiated intestinal
typel®. Furthermore, up-regulation of Notch1, Notch3,
Jaggedl, and Jagged2 are significantly correlated with
the intestinal type of GC?. In addition, inhibition of
Notch signaling pathway in GC leads to the activation
of PTEN, which consequently induces G2/M cell cycle
arrest™, Overexpression of Notch signaling target
genes, such as HEY1 and HEY2, has been reported in
ESCC with significant correlation to the different
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indices of poor prognosis, including stage of tumor
progression and lymph node metastasis®*.

Hippo signaling

The Hippo signaling pathway is a key element in cell
growth and organ size, as well as in the homeostasis of
the gastrointestinal tissues. Moreover, dysregulation of
Hippo pathway is associated with initiation,
development, and distant metastasis of GCI**. The
main components of this pathway are MST1/2,
LATS1/2, Mobl, YAPLl, and TAZl. MST1/2
phosphorylates and activates LATS1/2 and Mobl.
Then LATS1/2 phosphorylates YAP1 and TAZ and
increases  14-3-3  binding to  phosphorylated
YAP1/TAZ, leading to the oncogenic accumulation of
the  YAPL/TAZ in the cytoplasm. The
unphosphorylated YAPL1/TAZ translocates to the
nucleus and binds to the TEAD1-4 transcription factors
to induce transcriptional activity for cell growth and
differentiation® (Fig. 2).

While the down-regulation of upstream components
of Hippo pathway, such as MST1/2 and LATS1/2, is
detected in GC, up-regulation of YAP1 that is the main
downstream component is observed in high-grade
dysplasia and metastatic GCP\. Moreover, YAP1 is
negatively regulated by tumor suppressor microRNAS,
including miR-15a, miR-16-1, and miR-506 in GC!,
The gain of function mutation in RhoA, an activator of
YAP1, has been detected in diffuse type of GCF.
TEADA4 gene, as the main transcription factor of this

-
¥

Target genes

2

pathway, is significantly hypo-methylated, and its
overexpression is observed in GCY. Furthermore, the
expression of TAZ, another key effector of the Hippo
pathway, is associated with the overexpression of f-
catenin and poor prognosis in GC.

Epithelial-mesenchymal transition (EMT)

EMT is a cellular process that normally occurs
during heart morphogenesis, mesoderm and neural
crest formation, embryogenesis, wound healing, as
well as fibrotic disease and cancer*?. There are three
types of EMT process. The type one of EMT is
involved in generating mesenchymal cells; these cells
can undergo a MET process to produce secondary
epithelial cells. Actually, this type of EMT plays a role
during embryogenesis and organ development. The
type two of EMT involves in wound healing and tissue
reconstruction and organ fibrosis. Moreover, type two
is an essential factor during inflammation. The type
three of EMT has a key role in neoplastic cells; these
cells have enormous genetic and epigenetic changes,
especially in oncogenes and tumor suppressor genes.
Those neoplastic cells that undergo the type three of
EMT may invade and metastasize, thereby leading to
cancer progressiont3. Through the EMT process, cell
phenotype changes from epithelial to mesenchymal.
Indeed, epithelial cells lose their cell-cell adhesion,
alter their polarit}/, rearrange their cytoskeleton and
become isolated™*!.
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Fig. 2. Hippo pathway. (a) During signaling pathway; the upstream components (MST1/1, LATS1/2) phosphorylate the downstream
components and result in inactivation of pathway. (b) During GC; the expression of MST1/2 and LATS1/2 decreased and failed to
phosphorylate YAP/TAZ. YAP/TAZ translocates to the nucleus and binds to the TEAD, resulting in transcription of target genes.
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During EMT process, the down-regulation of E-
cadherin, which is essential for the cell adhesion and is
expressed at the surface of the epithelial cells, occurs.
Moreover, the overexpression of N-cadherin, which is
expressed in the mesanchymal cells, is another
important event in EMT. Other proteins such as
FSP1, B-catenin, a-SMA, extracellular matrix (ECM),
and cytoskeleton proteins are also determinant in EMT
progressi*®l. Besides, WNT5A induces EMT-related
genes in GC and probably regulats EMT processt*”. In
addition, paired-related homeobox 1 is up-regulated in
GC. Additionally, PRPX1 induces EMT through the
activation of the Wnt/B-catenin  pathway™.
Furthermore, the overexpression of the Twistl, a
regulatory protein of EMT, and Vimentin as well as
PDCD4 and E-cadherin downregulation have been
detected in GC samples. Moreover, CagA transfection
into GC cells can activate TWIST1 and Vimentin.
Besides, CagA can decrease the expression levels of
the E-cadherin through the down-regulation of the
PDCD4M).  Down-regulation of the Twistl is
associated with the up-regulation of the E-cadherin,
suggesting that Twistl induces EMT in GCPY.
Furthermore, the expression of the erythropoietin-
producing hepatocellular A2 is positively associated
with the EMT markers in GCPY. Moreover, Fas
signaling induces EMT and increases metastasis in GC.
During the progression of GC, the overexpression of
the FasL, Phospho-GSK-BB, Snail, and B-catenin is
observed™,

The overexpression of the transforming growth
factor beta (TGF-p1), Twistl, Snail, Slug, and
Vimentin, as well as CD44, which is a CSC marker, is
found in patients with dysplasia or early GC.
Moreover, the expression levels of E-cadherin, an
epithelial marker, decreased. Furthermore, eradication

Table 4. EMT factors

of the H. pylori infection decreased the levels of the
TGF-B1, Twist, Snail, Slug, and Vimentin, while the
levels of the E-cadherin increased. These data sug?ests
that H. pylori may induce EMT through TGF-p15%.

EMT is a key factor in gastric tumorigenesis. GC
stem cells are significantly correlated with the
expression of the EMT activating transcription factors.
Moreover, CD44 expression is significantly associated
with the expression of the Snail-1, ZEB-1, and E-
cadherin in GCP4. Overexpression of MAML1 and
TWIST1 is significantly correlated with lymph node
metastasis in ESCC patient®®™. Furthermore, the
expression levels of TWIST1 and SNAIL genes are
significantly correlated with invasion in ESCC cell line
KYSE-30 where ectopic expression of TWIST1 results
in the significant down-regulation of SNAILP®. Some
of the important factors of EMT have been summarized
in Table 4.

Matrix metalloproteinase

MMPs) break down the components of the ECM.
MMPs and their tissue inhibitors act in tumor invasion
and metastasis. The levels of the MMPs and tissue
inhibitors increased in  GCF'l.  Besides, the
overexpression of MMP9 in GC is associated with
tumor invasion, and its serum level has a relation with
the lymph node metastasis. Therefore, this data
suggests that MMP9 is a novel biomarker for diagnosis
and prognosis of GC®!. The overexpression of MMP2,
MMP7, and MMP9 has also been observed in GCP.
Interestingly, the expression of MMP1 is associated
with the metastasis of GC cells®®. Expression of the
integrin avp6, which is an epithelial-specific receptor
for fibronectin (an ECM protein), is associated with
MMP9 in GC*,

Gene Function

Cancer

Reference

E-Cadherin Cell adhesion

Expressed in epithelial cell

During EMT, the loss of E-cadherin expression
occeurs.

[122]

N-Cadherin  Expressed in mesenchymal cells Gain of N-Cadherin expression during EMT [122]
occurs.

TWIST1 A transcription factor induces EMT and Overexpression in GC and EMT happens. (123
increases metastasis

SNAIL Transcription factor that controls EMT Its expression is associated with tumorigenesis in (1241
during embryogenesis and tumorigenesis GC during EMT.

ZEB-1 A transcription factor that induces EMT and It overexpressed in GC. [125]
metastasis

Vimentin Mesenchymal marker in EMT Its overexpression is observed in GC during EMT. [126]

Slug Regulator of EMT It overexpressed in GC. 1271
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TGF-p signaling pathway

TGF-B signaling pathway involves in many cellular
processes such as cell growth, cell differentiation, and
apoptosis. This pathway has many ligands, including
TGF-B, activin, inhibin, bone morphogenetic proteins,
Nodal, and others'®®. Furthermore, this pathway has
two receptors: type | and type Il, which are
serine/threonine kinase receptors. During signaling, the
ligands bind to the type Il receptor where it catalyzes
and phosphorylates the type | receptor. Then type |
receptor phosphorylates SMADs proteins such as
SMADZ2/3; these proteins heterodimerize with SMAD4
and translocate into the nucleus to activate the
transcription of target genes®!. Dysregulation of the
components of this pathway occurs in GC. The
overexpression of TGF-pl is detected in GC!4.
Besides, its expression is associated with lymph node
metastasis'®. Moreover, the polymorphism -509C>T
in the promoter region of TGF-£1 has a connection
with worse prognosis in GC®. RUNX3 is one of the
target proteins in TGF signaling that is a defining
factor in induction of apoptosis in GC cells and its
inactivation has been found in GC®. Furthermore, H.
pylori infection leads to the methylation of RUNX3 and
inhibits its expression in GC®). Moreover, inactivation
of SMAD4 has been reported in GC'®®. Additionally,
mutations in TGFSRII occur in GC tissues, which are
likely the result of microsatellites’ instability.
TGFpRII gene has 10 poly-A repeats that make them
as hotspot regions for mutation®!. Besides, mutations
in TGFBRI are less frequent in GC, andits
downregulation is associated with poor prognosist™®.

Cyclooxygenase-2  and
pathways

COX-2/ Prostaglandin E2 is one of the important
pathways during gastric carcinogenesis. The COX
enzymes, COX-1 and COX-2, are key effectors in
prostaglandin synthesis. COX-1 has a function in the
maintenance of the gastric mucosa integrity, while
COX-2 is an inducible enzyme and can produce the
prostaglandins. Prostaglandins are necessary for the
reactions during the inflammatory processes. The
normal mucosa of gastric produces COX-1, but the
expression level of COX-2 is too low or undetectable.
Moreover, COX-2 takes part in inflammation and
carcinogenesisi’. Many studies have reported the
overexpression of COX-2 in GC"*™. Besides, the H.
pylori infection may induce the expression of COX-2
in GC. H. Pylori infection induces the COX2
expression through p38 mitogen-activated protein
kinase/activating transcription factor-2 signaling
pathway in MKN45 GC cells™. Therefore, this
pathway could be a novel therapeutic target for patients

lipoxygenase  (LOX)

Iran. Biomed. J. 22 (4): 217-230

who have H. pylori-associated GC. Furthermore, H.
pylori leads to the overexpression of vascular
endothelial growth factor (VEGF) in MKN45 cells,
which may be mediated by COX-21"®. Moreover, the
correlation between COX-2 expression and VEGF
expression has been reported in GC, suggesting the
important role of prostaglandins in  gastric
carcinogenesis’’!. Additionally, COX-2 regulates the
expression of Snail through Notch signaling pathway.
The COX-2 expression has an inverse correlation with
the Notch1 expression in GC cellst®.

LOX pathway is an important pathway in producing
leukotrienes and hydroxyeicosatetraenoic acids from
arachidonic acid™. This pathway is also dysregulated
during gastric carcinogenesis. In addition, 12-LOX is
important during tumorigenesis. Its expression is found
in GC cells, including AGS and MKN-28.
Furthermore, 12-LOX regulates the apoptosis and cell
proliferation in GC cells, and blocking the activity of
12-LOX leads to the inhibition of cell growth and
activation of apoptosis®®.  Furthermore, the
overexpression of LOX-5 has been reported in GC
where its expression is associated with lymph node
metastasis and TNM staging of the tumort®.
Moreover, during H. Pylori infection, the activity of 5-
LOX and the amount of 5-hydroxyeicosatetraenoic
acid, which is the product of the function of 5-LOX on
arachidonic acid, increased in GC cells®®¥, Besides, the
inhibition of 5-LOX led to the activation of apoptosis
in GC cells®®,

Epidermal growth factor receptor (EGFR), Human
epidermal growth factor receptor 2 (HER2)
signaling pathway

EGFR, a member of Erb-B family receptors, has a
role in gastric mucosa proliferation and development of
GC, and its overexpression is associated with poor
prognosis in GC®. Furthermore, the overexpression
and amplification of HER2, another member of ErbB
family, has been detected in GCI®!,

One of the downstream components of HER2 and
EGFR pathways is Ras, an oncogenic GTPase that has
three isoforms, including K-Ras, H-Ras, and N-Ras.
Mutation in K-RAS gene has been detected in intestinal
type of GC®). Moreover, mutations in K-RAS gene in
H. pylori-associated chronic gastritis is more frequent
in GC patients than those who did not have cancer.
This finding suggests that K-RAS gene mutation is
involved in the early stages of gastric carcinogenesis of
the intestinal type®. Besides, fluorescent in situ
hybridization study on gastric tumors, cell lines, and
patients-derived xenografts shows the amplification of
RTK/Ras components, including FGFR gibroblast
growth factor receptor) 2, HER2, and K-Ras®”.,

223


http://dx.doi.org/10.29252/ibj.22.4.217
https://dor.isc.ac/dor/20.1001.1.1028852.2018.22.4.8.7
https://ibj.pasteur.ac.ir/article-1-2398-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2026-02-16 ]

[ DOR: 20.1001.1.1028852.2018.22.4.8.7 ]

[ DOI: 10.29252/ibj.22.4.217 ]

Molecular Signaling in Gastric Cancer

Molaei et al.

Table 5. Genetic alteration targets for treatment of GC

Gene Function Expression in GC Treatment Reference

HER2 Regulation of cell growth and differentiation, Over, Amp Trastuzumab 171

EGFR Cell growth, cell profilation, and cellular survival Over, Amp Cetuximab [103.104]

Nimotuzumab

MET Embryogenesis, cellular survival, and cellular migration Over, Amp Onartuzumab [102]

HGF Regulation of cell motility and cell growth, morphogenesis of Over Rilotumumab 101
numerous cells and tissues, and angiogenesis

VEGF Angiogenesis, bone formation, hematopoiesis, wound healing, Over Bevacizumab [128]
and development

VEGFR2  Tyrosine kinase receptor, angiogenesis, embryonic hemopoiesis, Over Ramucirumab el
regulation of cell profilation, and organization of ECM

FGFR2 Cell division, cell growth, formation of blood vessels, wound Over, Amp AZD4547 [200]
healing, and embryonic development

IGFR-IR  Cell growth Over Figitumumab [129]

NF-xB Immune response to infection Over Bortezomib (130

mTOR Cell growth, cell proliferation, and cell cycle Over Everolimus (11

MMPs Degradation and destruction of ECM Over Marimastat (1321

Over, overexpression; Amp, amplification

Nuclear factor-kB

NF-kB is a family of bipartite transcription factors
that include NFKB1, NFKB2, c-Rel, RelA, and RelB.
The common form of NF-kB in mammalian is
RelA/NFkB1 dimer. Activation of this pathway occurs
during inflammation. NF-kB normally binds to its
inhibitor, inhibitory proteins of kB family (IkB), which
leads to NF-kB being restricted in the cytoplasm.
During  inflammation, kB  kinase = complex
phosphorylates 1kB, and then the degradation of kB
and activation of NF-kB occur®®. H. pylori infection
induces NF-kB activation in GC. Besides, H. pylori
infection induces the expression of the pro-
inflammatory cytokine IL-8 through the activation of
the NF-kB®Y. HUR, a RNA-binding factor, is a direct
transcript target of NF-kB and its activation in GC cell
lines depends on phosphatidylinositol 3-kinase/
AKT signaling. HuR activation has proliferative and
anti-apoptotic  effects on GCFY.  Fructose-1,6-
bisphosphatase-1 is an antagonist of the glycolysis
process. The NF-kB is involved in glycolsis process
through downregulation of FBP1 expression in GC!*%.
Furthermore, the aberrant expression of NF-kB has
anti-apoptotic effects and leads to drug resistant in
GC[94'95].

Treatment of gastric cancer

Surgery is the only curative treatment of GC,
whereas perioperative and adjuvant chemotherapy, in
addition to chemoradiation can improve the outcome of
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resectable GC with extended lymph node dissection.

According to the National Comprehensive Cancer
Network (NCCN), the treatment of the early stages of
GC guidelines includes endoscopic resection or
complete surgical resection for long-term survival.
Furthermore, in advanced stages of GC, the treatment
includes preoperative chemotherapy, or chemoradio-
therapy after surgery. The patients who have extended
lymph node resection (D2) are recommended to have
postoperative chemoradiation or chemotherapy. The
recommendation for patients who have unresectable
tumors is treating with fluoropyrimidine- or taxane-
based chemoradiotherapy®®.

There are several genes with altered expression
pattern in GC that can be a target for cancer-therapy
(Table 5). Trastuzumab, a humanized anti-HER2
monoclonal antibody, is used against HER2-positive
GCsP. Cetuximab, an anti-EGFR monoclonal
antibody, cannot induce any response in GC when used
alone. It is shown that VEGF and their receptors are
overexpressed in GC®. In this regard, Ramucirumab,
a fully human IgG1 antibody against VEGFRZ2, is now
approved by FDA for the treatment GC'*%),

AZD4547, as a selective ATP-competitive receptor
tyrosine kinase inhibitor of FGFR, is effective against
patients who have amplification of FGFR2M%Y.
Furthermore, hepatocyte growth factor (rilotumumab, a
fully human IgG2 monoclonal antibody against HGF),
hepatocyte growth factor receptor (onartuzumab,
humanized monoclonal antibody directed against
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HGFR), and EGFR (cetuximab, an anti-EGFR
monoclonal antibody and a nimotuzumab that is a
humanized monoclonal 19G, antibody to EGFR), are

also the targets of treatment in GCI*2041,

Here, we summarized multiple pathways involving
in GC carcinogenesis. A better understanding of
molecular mechanisms of GC progression and
development, as well as crosstalk between signaling
pathways can help to identify new targets for
anticancer drugs. Although many studies have been
done on GC, the mechanism of GC carcinogenesis is
still unclear. Understanding the molecular processes of
GC could help to design more efficient genetic studies.
With the novel technology advances, it will be easier to
find new and useful targets in signaling pathways;
these targets will be a potential marker for the early
diagnosis and treatment of GC. Therefore, the
management and the efficiency of treatment in patients
with GC will be improved in future.
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