Helicobacter pylori Dihydroorotate Dehydrogenase: a Promising Target for Screening Potential Drug Candidates

Saba Ghaffari¹, Maryam Esmaeili¹, Fatemeh Ayoubnejad¹, Yeganeh Talebkhan², Marjan Mohammadi^{1*}

¹HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; ²Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

OPEN ACCESS

Article type: Research Article Received: July 21, 2025 Revised: August 25, 2025 Accepted: September 1, 2025 Published online: September 2, 2025

How to cite:

Ghaffari S, Esmaeili M, Ayoubnejad F, Talebkhan Y, Mohammadi M. Helicobacter pylori Dihydroorotate Dehydrogenase: a Promising Target for Screening Potential Drug Candidates. Iran. Biomed. J. 2025; 29(5): ...-....

This article is licensed under a Creative Commons Attribution-NonDerivatives 4.0 International License

ABSTRACT

Background: De novo pyrimidine biosynthesis is essential for the survival of all living organisms. DHODH catalyzes the fourth step in this pathway. Inhibition of DHODH induces pyrimidine depletion and effectively eradicates microorganisms like *H. pylori*, which lacks the pyrimidine salvage pathway. Herein, we expressed rHp-DHODH, characterized its enzymatic activity, kinetics, and stability, and subsequently evaluated its inhibition by HQNO.

Methods: The gene fragment encoding the rHp-DHODH protein was synthesized, subcloned, and expressed in soluble form. The recombinant protein was purified, its identity was confirmed, and its activity was measured using a colorimetric reduction assay. Kinetic parameters and the effects of pH, temperature, and incubation time on the enzymatic activity were investigated. The inhibitory effect of HQNO on rHp-DHODH was evaluated using the DCIP reduction assay. The MIC of HQNO against *H. pylori* was determined, and its bactericidal/bacteriostatic effect was assessed.

Results: Optimal soluble expression of rHp-DHODH was achieved in BL21(DE3)pLysS. The enzyme exhibited a specific activity of 5.7 U/mg. Maximum activity was observed at pH 8.0 in Tris-HCl buffer at 25 °C. The K_m values were 39.75 μ M for DHO and 5.37 μ M for CoQ10, with a k_{cat} of 3.82 s⁻¹. The IC₅₀ of HQNO against the recombinant enzyme was determined as 1.75 μ M. HQNO inhibited H. pylori growth with an MIC of 0.5-1.0 μ g/mL, displaying concentration-dependent bacteriostatic to bactericidal effects.

Conclusions: The rHp-DHODH and its optimized enzymatic assay provide a reliable platform for screening candidate inhibitors, such as HQNO, advancing drug development efforts against *H. pylori* infection. **DOI:** 10.61186/ibj.5231

Keywords: Dihydroorotate dehydrogenase, Enzymes, Kinetics

Corresponding Author: Marjan Mohammadi

HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; E-mail: marjan.mohammadi@pasteur.ac.ir, marjan.mohammadi2010@gmail.com; ORCID ID: 0000-0003-4970-3455

INTRODUCTION

Telicobacter pylori infects over half of the global population, posing a significant public health concern. It is commonly associated with several gastric pathologies, including inflammation, gastroduodenal ulcers, and gastric cancer^[1,2]. Therefore, early detection and effective eradication are crucial to

prevent the spread of infection and its associated complications.

The standard triple therapy regimen for *H. pylori* infection includes the combination of antibiotics, such as amoxicillin, clarithromycin, and metronidazole, along with acid-suppressing agents like proton pump inhibitors. However, the effectiveness of these antibiotics has been declining due to the rise in antibiotic

List of Abbreviations:

CoQ10: coenzyme Q10; **DHO:** dihydroorotate; **DHODH:** dihydroorotate dehydrogenase; **FMN:** flavin mononucleotide; **H.** *pylori*: *Helicobacter pylori*; **HQNO:** 2-Heptyl-4-hydroxyquinoline N-oxide; **ITV:** intervenolin; **K**_m: michaelis-Menten constant; **MDR:** multidrug-resistant; **MIC:** minimum inhibitory concentration; **rHp-DHODH:** recombinant *H. pylori* DHODH

clarithromycin resistance, specifically to and metronidazole^[3,4]. As a result of rising antibiotic resistance, targeting essential bacterial metabolic pathways provides a promising approach. One such important pathway is pyrimidine biosynthesis, which is a vital biological process providing nucleotide precursors for RNA, DNA, glycoprotein, and membrane phospholipid synthesis in all living organisms^[5]. These precursors are supplied through the de novo biosynthesis and salvage pathways^[5]. While most organisms possess both pathways, certain human pathogens, including *H. pylori*^[6,7], *Plasmodium* falciparum^[6,8], and Schistosoma mansoni^[6] lack the pyrimidine salvage pathway and rely exclusively on the de novo pyrimidine biosynthesis for growth and survival. Since the pyrimidine salvage pathway is present in humans and other bacterial populations, these organisms may exhibit greater resistance to certain treatments. Therefore, targeting the de novo pathway is less likely to adversely affect the host or its microbiome. Thus, inhibiting one or more enzyme(s) in the de novo pyrimidine biosynthesis pathway could be an outstandingly effective approach to eradicate H. pylori infection, without affecting the human host or its natural microbiome.

DHODH is a crucial enzyme that catalyzes the fourth step of the de novo pyrimidine biosynthesis pathway, converting DHO to orotate with the concomitant reduction of the liposoluble quinone to quinol^[9] (Fig. S1). DHODH proteins are categorized into two groups based on their cellular localization, sequence similarity, and substrate preferences. Class 1 DHODH enzymes are typically found in the cytosol and have a more complex structure than class 2 DHODH enzymes, often comprising multiple domains or subunits. They are commonly found in Gram-positive bacteria such as Streptococcus mutans^[10] and Bacillus subtilis^[11], Leishmania $major^{[12]}$ parasites such as Trypanosoma spp. [13], as well as Saccharomyces cerevisiae[14].

Class 2 DHODH enzymes are located in the inner membrane of eukaryotic mitochondria or prokaryotic plasma membranes^[9], using respiratory quinones as electron acceptors^[15]. This class of DHODH is present in various organisms, including humans^[15], mammals^[16], plants^[17], insects^[18], many fungi^[19], and *H. pylori*^[7]. HQNO, a natural quinone analog synthesized by *P. aeruginosa*^[20], competitively inhibits ubiquinone binding to DHODH^[21]. HQNO resembles ubiquinone, permitting it to bind to the quinol oxidases available in the bacterial electron transportation chain^[22].

In this study, we successfully expressed the recombinant form of *H. pylori* DHODH and optimized

its expression to maximize both yield and solubility. The specific activity and kinetic parameters (K_m and k_{cat}) of the enzyme were also determined. Additionally, we assessed its stability under varying conditions of pH, temperature, and storage time. Furthermore, by investigating the inhibitory effects of HQNO on both recombinant DHODH activity and H. pylori growth, we demonstrated a promising strategy for the selective targeting of H. pylori metabolism.

MATERIALS AND METHODS

Cloning and transformation

N-terminal (transmembrane region)-truncated gene, including 23 amino acids)-truncated gene encoding *H. pylori* DHODH (Uniprot accession number B5Z6I2) was synthesized and inserted into the pET-28a vector, via the NcoI and XhoI restriction sites. The construct was transformed into *E. coli* TOP10F' competent cells. The grown colonies were subsequently screened by colony PCR, using the T7 universal and DHODH-specific primer sets (F: 5'-ccatggggcatatgctttattcattagt aa-3' and R: 5'- ctcgagggtaccttaatgatgatgatgatgatgtc-3'). Colonies were also screened by restriction digestion for the presence of the DHODH gene fragment and its correct direction using NdeI/KpnI and XhoI/NcoI restriction enzymes.

Protein expression and optimization

The expression of rHp-DHODH was thoroughly evaluated under different conditions. The studied factors included the type of expression host (SHuffle® T7, BL21-DE3, and BL21-DE3-pLysS), the temperature of induction (16 °C, 25 °C, and 37 °C), the post-induction time (4, 5, and 16 hours), and IPTG concentration (0.25, 0.5, and 1 mM). All expression evaluations were visually assessed using SDS-PAGE and quantitatively analyzed using the ImageJ software 1.46r. In the next step, the rHp-DHODH protein was expressed in the selected host under the optimized culture condition. The culture medium was then centrifuged at 4300 ×g for 20 min, and the bacterial pellet was stored at -70 °C until further processing.

Protein purification

All protein purification steps were carried out at 4 °C unless otherwise specified. Nickel affinity chromatography was used for the purification of rHp-DHODH. The collected bacterial pellet was resuspended in 10 mL lysis buffer (500 mM NaCl, 50 mM NaH₂PO₄, and 10 mM imidazole; pH 8.0). The suspension was then disrupted by sonication (70% intensity, 20-second pulses with 10-second intervals) for 20 minutes. Insoluble cell debris was removed by

centrifugation (15,700 ×g, at 4 °C, 30 minutes), and the supernatant was carefully collected. The supernatant was loaded onto the chromatography column, which was equilibrated with 10 mL of binding buffer (500 mM NaCl, 50 mM NaH₂PO₄, and 10 mM imidazole; pH 8.0). After washing the resin with 10 mL of wash buffer (500 mM NaCl, 50 mM NaH₂PO₄, and 20 mM imidazole; pH 8.0), the protein was eluted using the elution buffer (500 mM NaCl, 50 mM NaH₂PO₄, and 250 mM imidazole; pH 8.0). The purified rHp-DHODH was immediately buffer-exchanged against 20 mM Tris-HCl, 120 mM NaCl, and 20% (v/v) glycerol at pH 7.5, using a 10 kDa centrifugal filter unit (Amicon, Merck, Germany) to remove imidazole. The protein concentration of the elution samples was determined by bicinchoninic acid assay. Each fraction was assessed by SDS-PAGE, Western blotting using anti-histidine tag antibody (Sigma, USA), and enzymatic assay. The enzyme purity was quantified using the ImageJ program. The recombinant protein was stored at -70 °C for further analysis.

Enzyme activity assay

All assays were performed with the histidine-tagged recombinant enzyme, without cleavage of the tag. A substrate reduction assay was conducted using DCIP (Merck). Reactions were carried out in assay buffer (50 mM Tris-HCl, 150 mM KCl, 0.1% Triton X-100; pH 8.0) mixed with rHp-DHODH (0.125 µM) and dispensed into 96-well microplates. Following a 10minute incubation to reach ambient temperature, the reactions were initiated by adding equal volumes of the freshly prepared substrate mixture (1 mM Ldihydroorotic acid (Sigma), 0.05 mM decylubiquinone, and 0.18 mM DCIP). Changes in absorbance at OD₆₀₀ were recorded every 30 seconds, using a microplate spectrophotometer (Biotek, USA), over a period of five minutes. Samples were run in duplicates, and the mean ± SD are presented.

Specific activity calculation

Specific activity of the recombinant enzyme was calculated and expressed in units/mg, where one unit is defined as the amount of enzyme required to catalyze the reduction of 1 μ mol of DCIP per minute. The specific activity was calculated using the following formula^[23]:

$$\begin{array}{ll} \text{Specific activity} \left(\frac{U}{\text{mg}} \right) = & \frac{enzyme \ activity}{amount \ of \ enzyme} \\ = & \\ & \frac{\text{Adjusted} \ V_{max} \left(\frac{\text{OD}}{\text{min}} \right)^* (-1)^* \ \text{well volume} \ (\text{L})^* \ 10^{12} \left(\frac{pmol}{mol} \right)}{\varepsilon \left(M^{-1} c \ m^{-1} \right) x \ path \ correction \ (cm) \ x \ amount \ of \ enzyme \ (\mu g)} x \ 10^{-3} \end{array}$$

Where the extinction coefficient (ϵ) for DCIP is 18,800 M⁻¹cm⁻¹, and the path correction is 0.57 cm.

K_m determination

Kinetic constants of the substrate were determined using the reduction assay by varying concentrations of DHO (6.25-750 µM) at a fixed concentration (50 µM) of Q10. Similarly, the K_m of the coenzyme was determined by varying concentrations of Q10 (3.125-50 µM) at a fixed concentration (1000 µM) of DHO. The initial velocity of the enzyme was measured within the first 30 seconds after the reaction commenced. The obtained data were fitted to the following equation: $v = \frac{V_{max}[S]}{K_m + [S]}$. Where K_m represents the substrate concentration that yields half-maximal velocity. V_{max} refers to the maximum velocity achieved when the enzyme is saturated with the substrate. The initial velocity within the first 30 seconds after the reaction has started, is denoted as v. [S] represents the substrate concentration. The turnover number (k_{cat}) was calculated using the formula: $k_{cat} = \frac{v_{max}}{[ET]}$. Where [ET] is the total enzyme concentration, based on one existing active site (monomer)[24].

pH-dependent activity

Initial velocities at saturating substrate concentrations (1 mM DHO and 0.05 mM decylubiquinone) were measured in different buffering systems (HEPES-HCl and Tris-HCl) over a pH range of 6.8 to 9.0, using the substrate reduction assay. Values in overlapping pH ranges were measured in two different buffers to exclude salt effects.

Temperature-dependent stability

To investigate the temperature-dependent stability of the rHp-DHODH, we conducted the reduction assay at two different temperatures (25 °C and 37 °C) immediately after the addition of the substrate (DHO) to the reaction mixture or after a 30-minute incubation of the recombinant enzyme-substrate mixture (without DHO) at different temperatures, before adding the substrate. The substrate mixture without enzyme was also incubated to evaluate the susceptibility of the substrate mixture to temperature.

Time-dependent stability

To assess the stability of rHp-DHODH over time, we measured its activity at 0, 1, 2, 4, 8, and 20 weeks after its purification and storage at -70 °C.

Sequence alignment

To compare the HQNO binding sites between *E. coli*^[22] and *H. pylori*, we retrieved DHODH amino acid sequences from the UniProt database (https://www.uniprot.org). P0A7E1 (*E. coli-k12*), O25655 (*H. pylori*-26695), and B5Z6I2 (*H. pylori*-G27) sequences were aligned using CLUSTAL Omega (1.2.4) pairwise sequence alignment.

Enzyme inhibition assay

The inhibitory effect of HQNO on the rHp-DHODH was evaluated using the substrate reduction assay. HQNO solution was added to the enzyme-containing mixtures at final concentrations ranging from 1.0 to 16.0 μ M. Control reactions included wells with no recombinant protein or those without HQNO, where an equivalent volume of DMSO was added. After a 30-minute incubation at ambient temperature, the reactions were initiated by adding a freshly prepared substrate. The changes at 600 nm wavelength were monitored for five minutes at 30-second intervals.

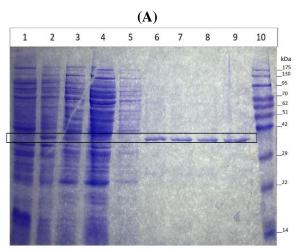
MIC determination

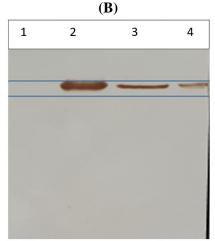
The standard H. pylori 26695 strain and three clinical MDR isolates were used. The MDR strains were as follows: (1) ClaR/LVXR (MDR-1), (2) AMXR/LVXR (MDR-2), and (3) ClaR/AMXR/LVXR (MDR-3). These clinical strains were previously isolated banked^[25-27]. Bacterial strains were cultured on Brucella (Merck) plates supplemented with defibrinated sheep blood, amphotericin B (8 mg/L), vancomycin (10 mg/L), and trimethoprim (5 mg/L). Plates were incubated under microaerobic conditions (10% CO₂, 5% O₂, 85% N₂) at 37 °C for 3-5 days^[28,29]. The agar dilution method^[30] was employed to evaluate the growth-inhibitory effect of HQNO, where HQNO incorporated into the agar at concentrations. Pre-cultured H. pylori strains were harvested from agar plates and resuspended in sterile Brain Heart Infusion broth to an OD600 of 0.7 (equivalent to a 4 McFarland standard). Ten microliters of the diluted bacterial suspension were then plated. To serve as negative controls, the equivalent amounts of DMSO were also tested. After incubating the plates for 3-5 days, the MIC was designated as the lowest concentration of HQNO at which no visible bacterial growth was observed.

Bacteriostatic versus bactericidal properties

This assay was performed to evaluate the bacteriostatic/bactericidal effect of HQNO against H. pylori. The H. pylori 26695 strain was pre-cultured, and its cell density was adjusted to an OD_{600} of 0.4 in autoclaved Brucella broth medium supplemented with 0.2% sterile-filtered β -cyclodextrin, using T_{25} flasks. HQNO was tested at concentrations ranging from 0 to 4 μ g/mL, while clarithromycin (0.25 μ g/mL) was used as the standard bactericidal agent. Drug-free inoculated broth medium was considered as the negative control. The flasks were incubated under microaerophilic conditions at 37 °C, while shaking (120 rpm) for 72 hours. OD_{600} was measured at 24, 48, and 72 hours post-inoculation. To assess the viability and purity, 10 μ L

aliquots from each sample were plated at each time point. Data are presented as mean \pm SD of duplicate measurements.


RESULTS


Cloning, expression and purification of recombinant DHODH protein

The presence of the rHp-DHODH expression cassette (Fig. S2) in TOP10F' colonies was verified by colony PCR using universal T7-specific primers (~1300 bp) and DHODH-specific primers (~1100 bp) (Fig. S3). Positive colonies were further confirmed by restriction digestion (data not shown). SHuffle® T7 E. coli cells were initially used for protein expression under different incubation times and IPTG concentrations at 16 °C. However, no significant protein expression was observed. By switching to E. coli BL21(DE3) host cells, protein expression at 16 °C, 25 °C, and 37 °C with 0.5 mM IPTG was tested, and no significant temperaturedependent differences were observed. rHp-DHODH expression at 37 °C for 5 hours reached 2.8% of the total protein, mostly forming insoluble inclusion bodies. To enhance the soluble expression of this potentially toxic protein, we employed the E. coli BL21(DE3)pLysS strain under the same conditions. Having done so, a significantly higher expression level representing 5.5% soluble protein, was achieved. These results indicate that BL21(DE3)pLysS is the optimal host cell for soluble expression of rHp-DHODH. The rHp-DHODH enzyme was purified from sonicated bacterial lysates using nickel affinity chromatography with an imidazole gradient. The eluted enzyme was immediately buffer-exchanged against a stabilizer containing 20% (v/v) glycerol and stored at -70 °C until future use. SDS-PAGE analysis of the purified enzyme showed a single band at the expected weight of approximately 40 kDa on SDS-PAGE (Fig. 1A) and immunoblotting (Fig. 1B). ImageJ software quantified the protein purity as 97.5%.

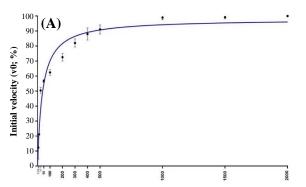
Enzyme specific activity and kinetics

The oxidation of DHO was assessed using the DCIP reduction assay with decylubiquinone (CoQ₁₀), as the electron acceptor. The rHp-DHODH displayed a specific activity of 5.7 U/mg. The kinetic analysis yielded K_m values of 39.75 μM for DHO (Fig. 2A) and 5.37 μM for Q₁₀ (Fig. 2B). The calculated turnover number (k_{cat}) was 3.82 s⁻¹, while the catalytic efficiency (k_{cat}/K_m) was 0.096 $\mu M^{-1}s^{-1}$ for DHO and 0.711 $\mu M^{-1}s^{-1}$ for Q10.

Fig. 1. Expression and purification of rHp-DHODH protein expressed in *BL21(DE3)pLysS*. (A) SDS-PAGE: lanes 1 and 2: bacterial lysates before and after induction, lane 3: initial sample for purification, lane 4: flow-through sample, lane 5: wash sample, lanes 6-9: eluted rHp-DHODH proteins, and lane 10: protein ladder; (B) Western blotting: lanes 1 and 2: bacterial cell lysates before and after induction, lane 3: initial sample for purification, and lane 4: eluted r-Hp-DHODH protein.

pH-dependent activity

As shown in Figure 3A, maximum activity of rHp-DHODH was demonstrated in Tris-HCl buffer at pH 8.0, which was higher than the obtained activity in the HEPES buffer (pH 6.8 or 8.0).


Temperature and time-dependent stability

The stability study was performed to evaluate the impact of temperature and incubation time on enzymatic activity (Fig. 3B). Immediate use of the enzyme at 25 °C represented the highest activity, while a slight decrease in activity was observed when the enzyme-substrate mixture was incubated at 25 °C for 30 minutes, before adding DHO. In contrast, incubation at 37 °C for 30 minutes significantly reduced the activity to 38%, indicating the sensitivity of the enzyme to higher temperatures. These findings suggest that rHp-DHODH is optimally active at 25 °C

and prone to thermal inactivation at higher temperatures. The recombinant DHODH maintained full activity for at least eight weeks (Fig. 3C). However, after 20 weeks of storage at -70 °C, its activity decreased by approximately 50%.

Sequence alignment of *H. pylori* DHODH with its *E. coli* counterpart

According to the computational analysis performed by Horwitz et al.^[22], HQNO inhibits *E. coli* DHODH activity through competitive inhibition at the ubiquinone binding site. To compare HQNO binding sites, we aligned *H. pylori*-26695 and *E. coli*-K12 DHODH amino acid sequences. Our analysis revealed that three of the four critical residues involved in HQNO binding (Pro₁₅, His₁₉, Arg₁₀₂, and Tyr₃₁₈) are conserved between *E. coli*-K12 and *H. pylori*-26695 DHODH proteins (Fig. 4), highlighting the similarity of their

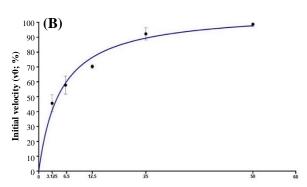
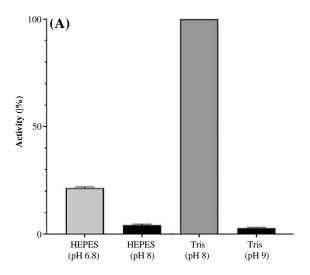
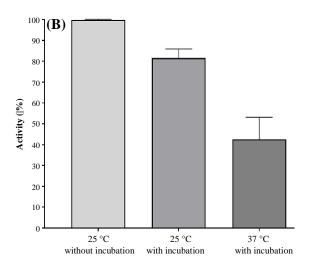
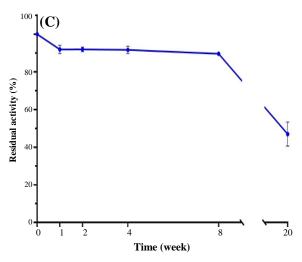





Fig. 2. Kinetic analysis of the rHp-DHODH. Initial velocities are shown as a function of varying (A) DHO concentrations, at a fixed concentration of Q10 (50 μ M) and (B) Q10 concentrations at a fixed concentration of DHO (1000 μ M). The curve was fitted to the Michaelis-Menten equation, $v = (V_{max} . [S])/(K_m + [S])$ using GraphPad Prism 8.

Iran. Biomed. J. 29 (5): ...-...

Fig. 3. (A) pH-dependent activity, (B) temperature-dependent stability, and (C) time-dependent stability of rHp-DHODH. Results are presented as mean \pm SD of duplicate samples. The graphs were created using GraphPad Prism 8.

binding sites. Similar results were obtained by aligning the amino acid sequence of *E. coli*-K12 DHODH with that of *H. pylori*-G25 (data not shown).

Enzyme inhibitory effect of HQNO

We assessed the inhibitory effect of HQNO on the enzymatic activity of rHp-DHODH. As a result, HQNO inhibited rHp-DHODH activity in a dose-dependent manner, with an IC₅₀ of 1.75 μ M (Fig. 5A).

Growth inhibitory effect of HQNO

The antibacterial activity of HQNO was evaluated against various H. pylori strains. The observed MIC values ranged from 0.5 to 1.0 µg/mL among both standard and MDR strains (Table 1). To determine the bacteriostatic/bactericidal effects of HONO, we evaluated its growth inhibitory activity at various concentrations (0.25 to 4.0 µg/mL) and time points, with clarithromycin serving as a bactericidal control (0.25 µg/mL). Bacterial growth was monitored by measuring OD₆₀₀ nm. As illustrated in Figure 5B, at all tested concentrations, HQNO similar to clarithromycin, inhibited bacterial growth compared to the drug-free control. At each time point, samples were plated to assess the viability of *H. pylori* colonies. Notably, HONO at lower concentrations (0.25 to 2.0 µg/mL) allowed bacterial regrowth on antibiotic-free plates. However, at 4.0 µg/mL, similar to clarithromycin, it prevented growth on culture plates entirely, indicating a dose-dependent bacteriostatic to bactericidal effect.

DISCUSSION

a Gram-negative, microaerophilic pylori, bacterium, is associated with the development of gastritis, gastric ulcers, and gastric cancer^[1,2]. In the face antibiotic resistance, the urgent need to discover new drugs to treat H. pylori infection has become a critical priority^[31]. DHODH is an essential enzyme in the de novo pyrimidine biosynthesis, playing a crucial role in the survival and proliferation of H. pylori. Inhibition of DHODH effectively disrupts the growth of H. pylori and contributes to combating antibiotic-resistant infections. Approximately 25 years ago, Copeland et al. were the first to successfully express recombinant Hp-DHODH[7]. However, their research did not delve into the biochemical or functional properties of the enzyme in detail. Herein, we have focused on optimizing rHp-DHODH expression, activity, kinetics, and stability to create a platform for evaluating candidate drugs targeting this enzyme. To achieve optimal rHp-DHODH expression, we first evaluated its expression across various E. coli hosts

CLUSTAL O (1.2.4) pairwise sequence alignment

E.coli-K12	MYYPFVRKALFQLD <mark>P</mark> ERA <mark>H</mark> EFTFQQLRRITGTPFEALVRQKVPAKPVNCMGLTFK	55			
H.pylori-26695	MLYSLVKKYLFSLD <mark>A</mark> EDA <mark>H</mark> EKVCKILRMLSSSPFLCNLIDSQWGYQNPKLENEILGLHF				
	* * .*.* ** ** * **				
E.coli-K12	$NPLGLAAGLDKDGECIDALGAMGFGSIEIGTVTPRPQPGNDKPRLF{^{\mathbf{R}}LVDAEGLINRMGF$	115			
H.pylori-26695	${\tt NPLGLAAGFDKNASMLRALMAFGFGYLEAGTLTNEAQVGNERPRLF} {\tt R} {\tt HIEEESLQNAMGF}$	120			

E.coli-K12	NNLGVDNLVENV-KKAHYDGVLGINIGKNKDTPVEQGKDDYLICMEKIYAYAGYIAINIS	174			
H.pylori-26695	NNYGAILGVRSFKRFAPYKTPIGINLGKNKHIEQAHALEDYKAVLSKCLNIGDYYTFNLS	180			
	** * * * *****				
E.coli-K12	SPNTPGLRTLQYGEALDDLLTAIKNKQNDLQAMHHKYVPIAVKIAPDLSEEELIQVADSL	234			
H.pylori-26695	SPNTPNLRDLQNKAFVHELFCMAKEMTHKPLFLKIAPDLETDDMLEIVNSA	231			
	***** ** **				
E.coli-K12	VRHNIDGVIATNTTLDRSLVQGMKNCDQTGGLSGRPLQLKSTEIIRRLSLELNGRLPIIG	294			
H.pylori-26695	IGAGAHGIIATNTTIDKSLVFAPKEMGGLSGKCLTKKSREIFKELAKAFFNKSVLVS	288			
5 1 2 W40	VCCTPCVT AAPEVT AACAC I VOT	226			
E.coli-K12	VGGIDSVIAAREKIAAGASLVQI <mark>Y</mark> SGFIFKGPPLIKEIVTHI	336			
H.pylori-26695	VGGISDAKEAYERIKMGASLLQI <mark>Y</mark> SAFIYNGPNLCQNILKDLVKLLQKDGFLSVKEAIGA	348			
	**** · · · * * · * *** · · · · · · · ·				
E.coli-K12	336				
H.pylori-26695	DLR 351				
.,,					

Fig. 4. Amino acid sequence alignment of *E. coli*-K12 and *H. pylori*-26695 DHODH enzymes using CLUSTAL Omega pairwise sequence alignment. Conserved residues critical for HQNO binding are highlighted in green, while a corresponding dissimilar residue in *H. pylori* is shown in pink.

considering different parameters, including post-induction time, incubation temperature, and IPTG concentrations. Given the toxic effects of DHODH overexpression^[32], we chose the *BL21(DE3)pLysS* strain, as it is capable of expressing soluble toxic proteins^[33]. Optimal expression was obtained with 0.5 mM IPTG at 37 °C. To minimize protein aggregation, we limited the incubation time to five hours. Extending the incubation period led to growth termination, possibly due to the cytotoxicity associated with DHODH overexpression^[32]. Additionally, we performed protein expression without supplementing

exogenous FMN, as *E. coli* endogenously synthesizes sufficient levels of FMN to support the recombinant production of DHODH enzymes^[7,34]. We then purified rHp-DHODH using one-step nickel affinity chromatography. To minimize loss of enzyme activity, we avoided vigorous washing^[35]. Having taken this precaution, the purity of our eluted rHp-DHODH reached 97.5%. Immediately following purification, the protein was buffer-exchanged with a stabilizing solution, comprising 20 mM Tris-HCl, 120 mM NaCl, and 20% (v/v) glycerol at pH 7.5 for storage at -70 °C. In contrast, Copeland et al.^[7] purified rHp-DHODH

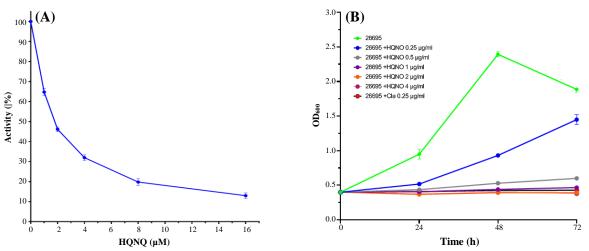


Fig. 5. The dose-dependent inhibitory effect of HQNO on (A) rHp-DHODH enzyme activity compared to the control and (B) on H. Pylori growth, in comparison with clarithromycin (0.25 μ g/mL). Data are presented as mean \pm SD of duplicate samples.

using a combination of nickel affinity chromatography and S-200 gel filtration chromatography, achieving a comparable purity of over 90%. Their earlier work with recombinant human DHODH involved Matrex Green (an affinity chromatography) and ion-exchange chromatography (Q Sepharose HP column) for purification^[34]. However, they observed reduced specific activity of the human enzyme when using this method, attributing this to dye leaching, which inhibited enzyme activity but could be mitigated through dialysis^[34].

As the next step, we evaluated the enzyme activity of rHp-DHODH across a range of pH values using different buffer systems, as well as time and temperature. The recombinant enzyme displayed its highest activity in Tris-HCl buffer at pH 8.0, at an optimal temperature of 25 °C. These findings suggest that the specific ionic composition of the buffers plays a critical role in modulating the performance of the enzyme. Although rHp-DHODH showed peak activity at 25 °C, lower than *H. pylori*'s physiological temperature, this discrepancy can be attributed to in vitro assay limitations and the effects of recombinant expression in *E. coli*. Prior studies have also used 25 °C for DHODH enzymatic assays, supporting the validity of this experimental condition^[7,34]. Accordingly,

Copeland et al.^[7] performed their assays at 25 °C in Tris buffer at pH 7.5. In their earlier work with recombinant human DHODH, they identified two key transition pKa values of 7.41 and 9.36^[34]. These observations align with our findings, further supporting the conclusion that Tris-HCl buffer at pH 8.0 is optimal for rHp-DHODH enzymatic activity. In their study, Copeland et al.[7] noted that the His-tag on rHp-DHODH does not influence its kinetic constants, but the specific activity was not reported. We also retained the His-tag and determined the specific activity of the produced rHp-DHODH to be 5.7 U/mg, with K_m value of 39.75 µM for the substrate (DHO). Class 2 DHODH enzymes use a membrane-soluble quinone as their electron acceptor^[15]. The specific quinone used under physiological conditions is largely dictated by its availability at the membrane. Most organisms typically produce only one type of quinone^[36]. In our study, the obtained K_m value for the CoQ10 was 5.37 µM. However, Copeland et al. [7] provided K_m values for several other coenzymes such as Q6, Q0, menaquinone, and menadione, with values of 19, 5.3, 8.7, and 5.9 µM, respectively. Furthermore, we determined the turnover number (kcat) of rHp-DHODH to be $3.82 \,\mathrm{s}^{-1}$. The k_{cat} represents the number of substrate molecules converted to product, per active site, per second, serving as a crucial metric for assessing the

Table 1. The MIC of HQNO on reference strain (26695) and three clinical MDR strains of H. pylori

H. pylori strains —	MIC (μg/mL)				
	HQNO	Carithromycin ¹	Amoxicillin ²	Levofloxacin ³	
26695	≤1.0	≤0.25	≤0.25	≤1.0	
MDR-1	≤0.5	>16.0	≤1	>16.0	
MDR-2	≤0.5	≤0.25	>2.0	>16.0	
MDR-3	≤0.5	>16.0	>2.0	>16.0	

R: resistance; ${}^{1}R > 0.5$; ${}^{2}R > 0.125$; ${}^{3}R > 1.0^{[30]}$

efficiency of the enzyme in catalyzing reactions^[37]. This value provides valuable insight into the catalytic efficiency of rHp-DHODH.

To evaluate the robustness of rHp-DHODH, we assessed its stability over time. The recombinant enzyme retained its activity for at least eight weeks, when stored at -70 °C in a stabilizing buffer. However, at 20 weeks post-production, its activity declined by up to 50%. This stability is comparable to that of the commercial recombinant human DHODH produced by R&D Systems^[23], which reportedly remains stable for approximately 12 weeks when stored at -20 °C or -70 °C. This evaluation is essential for assessing the long-term applicability of rHp-DHODH in diverse contexts, including biochemical assays and drug evaluation studies.

DHODH class 2 inhibitors typically act by interfering with the interaction between CoQ and DHODH, thereby disrupting the electron transfer process essential for the catalytic activity of the enzyme^[9]. Human DHODH inhibitors, such as Brequinar, Leflunomide, and Teriflunomide, demonstrate how disrupting the CoQ-DHODH interaction is a potent strategy for inhibiting pyrimidine synthesis^[38-42]. In the case of *H. pylori* DHODH, two major classes of inhibitors have been identified, which are quinolone-based^[7,43] and pyrazole-based compounds^[44]. Both compound classes act as CoQ competitors, effectively blocking electron transfer by occupying the ubiquinone-binding site of the enzyme^[7,43,44].

Agarwal and colleagues^[45] analyzed the crystal structure of rHp-DHODH bound to FMN in order to confirm the inhibitory effect of compounds such as pyrazoles and found that rHp-DHODH binds ubiquinone through a hydrophobic channel. Key residues in the FMN binding pocket were found to be crucial for enzymatic function, which present potential targets for inhibitors mimicking FMN or ubiquinone^[46]. HQNO, a natural quinone analogue, represents inhibitory effects on DHODH enzymes of multiple organisms^[46-49]. Furthermore, in silico performed by Horwitz et al.[22], demonstrated that HQNO inhibits E. coli DHODH activity through competitive inhibition at the ubiquinone binding site. Accordingly, we conducted a sequence alignment of H. pylori and E. coli DHODH enzymes. This alignment revealed that three of the four key residues for coenzyme binding (His₁₉, Arg₁₀₂, and Tyr₃₁₈) identified by Horwitz et al.^[22] are conserved in both organisms. To validate this observation on *H. pylori*, we evaluated its inhibitory effect on rHp-DHODH enzyme activity, which yielded an IC50 value of 1.75 μM . This finding is in accordance with HQNO inhibiting rDHODH of S. aureus with an IC₅₀ of $0.68 \pm 0.05 \,\mu\text{M}^{[46]}$ and that of *P. falciparum* with

an IC50 of 17.7-18 $\mu M^{[48]}$. In future studies, molecular docking analyses should be performed to validate the predicted interaction between HQNO and the active site of rHp-DHODH. This approach would provide structural insights into the binding mode and affinity of HQNO, thereby supporting the hypothesis generated from our sequence alignment results. We next determined the inhibitory effect of HQNO on H. pylori growth, which indicated an MIC of 0.5 to 1.0 µg/mL. We also assessed whether olorofim exerted bactericidal or bacteriostatic effects, revealing a concentrationdependent activity. In other words, HQNO acted as a bacteriostatic agent at lower concentrations (0.25 to 2.0 μg/mL), while at 4 μg/mL, it exhibited bactericidal effects against *H. pylori*. This finding is in line with the study by Wang et al.[49], who found this compound to reduce H. pylori-induced pathogenicity, particularly CagA translocation.

In 2000, Copeland et al.^[7] recognized a pyrazole-based compound through biochemical screening that effectively inhibited rHp-DHODH, exhibiting average K_i values of 26 ± 0.12 nM in the presence of Q6 (with detergent) and 10.2 ± 0.2 nM in the presence of Q0 (without detergent). Additionally, they introduced another structural analog that inhibited rHp-DHODH with a K_i value of 50 nM in the presence of Q6. Subsequent modifications to the side chains of these compounds by Haque et al.^[44] enhanced their specificity, achieving K_i values below 10 nM.

In 2018, Ohishi et al. [43] introduced ITV, a specific natural product of the quinolone family, as an inhibitor of H. pylori DHODH. This natural quinolone, isolated from the culture broth of Nocardia sp. ML96-86F2, was previously recognized for its inhibitory effects on human cancer cell lines^[50]. To evaluate its efficacy, ITV and its derivatives (AS-1934 and AS-1664) were tested for DHODH inhibition in *H. pylori* membrane fractions, yielding IC₅₀ values of 11.11 \pm 2.44 μ M, 4.55 \pm 0.49 μM , and 0.06 \pm 0.02 μM for ITV, AS-1934, and AS-1664, respectively. Furthermore, these compounds also inhibited DHODH activity in E. coli membrane fractions overexpressing H. pylori DHODH, with IC₅₀ values of $6 \pm 0.26 \,\mu\text{M}$, $3.01 \pm 0.23 \,\mu\text{M}$, and 0.22 ± 0.01 μM, respectively. As a result, AS-1934 was declared as a candidate drug for monotherapy of H. pylori infection^[43]. In comparison, our obtained IC₅₀ for HQNO on rHp-DHODH (1.75 µM) seems quite efficient.

CONCLUSION

In this study, we successfully developed a recombinant form of *H. pylori* DHODH, and focused on

optimizing protein expression to achieve maximum yield and solubility by employing various bacterial strains and experimental conditions. After determining the optimal expression conditions, we assessed the specific activity of the recombinant enzyme to evaluate its efficiency and functionality. Additionally, we conducted a detailed analysis of the kinetic properties of the enzyme, including the K_m and turnover number (k_{cat}), to gain insights into its catalytic performance. Stability assessments were performed over time, under different temperatures and pH conditions, showing the robustness and potential suitability of the enzyme for a wide range of applications. Ultimately, we used this platform to evaluate a potential drug candidate, HQNO, and found it to be effective in inhibiting both the enzymatic activity of recombinant H. pylori DHODH and bacterial growth. However, to further establish HQNO as a potential therapeutic agent against *H. pylori*, it is essential to conduct general cytotoxicity assays using mammalian cell lines, particularly gastric epithelial cells. Assessing the selectivity and potential cytotoxic effects of the compound will be critical for evaluating its safety profile and determining its suitability for clinical development.

DECLARATIONS

Acknowledgments

AI tools have been used to improve the English language in certain texts.

Ethical approval

All experimental procedures in this study were approved by the Research Ethics Committee of Pasteur Institute of Iran, Tehran, Iran (ethical code: IR.PII.REC.1401.022).

Consent to participate

Not applicable.

Consent for publication

All authors reviewed the results and approved the final version of the manuscript.

Authors' contributions

SGh: designed the methodology; performed the experiments, analyzed the data, and wrote the first draft of the manuscript; ME: performed the experiments; FA: performed the experiments and wrote the first draft of the manuscript; YT: designed the methodology; MM: wrote the first draft of the manuscript, conceived the study, supervised the project, approved the final manuscript, and secured the funding. All authors contributed to revisions.

Data availability

All relevant data can be found within the manuscript.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by a research grant from Pasteur Institute of Iran (#2092, IR.PII.REC.1401.022).

Supplementary information

The online version contains supplementary material.

REFERENCES

- 1. Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, et al. Helicobacter pylori infection. Nat Rev Dis Primers. 2023;9(1):19.
- 2. Malfertheiner P, Schulz C, Hunt RH. Helicobacter pylori infection: A 40-year journey through shifting the paradigm to transforming the management. Dig Dis. 2024;42(4):299-308.
- Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in World Health Organization regions. Gastroenterology. 2018;155(5):1372-1382.
- Davies O, Bennett S. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO Newsletters. 2017.
- 5. Garavito MF, Narváez-Ortiz HY, Zimmermann BH. Pyrimidine metabolism: Dynamic and versatile pathways in pathogens and cellular development. J Genet Genomics. 2015;42(5):195-205.
- 6. Boschi D, Pippione AC, Sainas S, Lolli ML. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem. 2019;183:111681.
- Copeland RA, Marcinkeviciene J, Haque TS, Kopcho LM, Jiang W, Wang K, et al. Helicobacter pyloriselective antibacterials based on inhibition of pyrimidine biosynthesis. J Biol Chem. 2000;275(43):33373-8.
- 8. Belen Cassera M, Zhang Y, Hazleton KZ, Schramm VL. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011;11(16):2103-15.
- 9. Reis RA, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: Past and present. Arch Biochem Biophys. 2017;632:175-91.
- 10. Liu Y, Gao Z-Q, Liu CP, Xu JH, Li LF, Ji CN, et al. Structure of the putative dihydroorotate dehydrogenase from Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67(2):182-7.
- 11. Kahler AE, Nielsen FS, Switzer RL. Biochemical characterization of the heteromeric Bacillus subtilis

- dihydroorotate dehydrogenase and its isolated subunits. Arch Biochem Biophys. 1999;371(2):191-201.
- 12. Feliciano PR, Cordeiro AT, Costa-Filho AJ, Nonato MC. Cloning, expression, purification, and characterization of Leishmania major dihydroorotate dehydrogenase. Protein Exp Purif. 2006;48(1):98-103.
- 13. Arakaki TL, Buckner FS, Gillespie JR, Malmquist NA, Phillips MA, Kalyuzhniy O,et al. Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Mol Microbiol. 2008;68(1):37-50.
- Nagy M, Lacroute F, Thomas D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA. 1992;89(19):8966-70.
- Orozco Rodriguez JM, Wacklin-Knecht HP, Clifton LA, Bogojevic O, Leung A, Fragneto G, et al. New insights into the interaction of Class II dihydroorotate dehydrogenases with ubiquinone in lipid bilayers as a function of lipid composition. Int J Mol Sci. 2022;23(5):2437.
- 16. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway. J Biol Chem. 2004;279(32):33035-8.
- 17. Ullrich A, Knecht W, Piskur J, Löffler M. Plant dihydroorotate dehydrogenase differs significantly in substrate specificity and inhibition from the animal enzymes. FEBS Lett. 2002;529(2-3):346-50.
- 18. Löffler M, Knecht W, Rawls J, Ullrich A, Dietz C. Drosophila melanogaster dihydroorotate dehydrogenase: The N-terminus is important for biological function in vivo but not for catalytic properties in vitro. Insect Biochem Mol Biol. 2002;32(9):1159-69.
- Bouwknegt J, Koster CC, Vos AM, Ortiz-Merino RA, Wassink M, Luttik MA, et al. Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biol Biotechnol. 2021;8(1):10.
- Hoffman LR, Déziel E, D'Argenio DA, Lépine F, Emerson J, McNamara S, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci. 2006;103(52):19890-5.
- Petri J, Shimaki Y, Jiao W, Bridges HR, Russell ER, Parker EJ, et al. Structure of the NDH-2–HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochim Biophys Acta Bioenerg. 2018;1859(7):482-90.
- Horwitz SM, Blue TC, Ambarian JA, et al. Structural insights into inhibition of the drug target dihydroorotate dehydrogenase by bacterial hydroxyalkylquinolines. RSC Chemical Biology 2022;3:420-425.
- R&D systems products. Recombinant human DHODH protein. Datasheets. Available at https://www.rndsystems.com
- 24. Michaelis L, Menten ML, Johnson KA, Goody RS. The original michaelis constant: Translation of the 1913 michaelis—menten paper. Biochemistry. 2011;50(39):8264-8269.
- Salehi N, Attaran B, Eskini N, Esmaeili M, Sharifirad A, Sadeghi M, et al. New insights into resistance of

- Helicobacter pylori against third- and fourth-generation fluoroquinolones: A molecular docking study of prevalent GyrA mutations. Helicobacter. 2019;24(5):12628.
- 26. Attaran B, Salehi N, Ghadiri B, Esmaeili M, Kalateh S, Tashakoripour M, et al. The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathog. 2021;13(1):43.
- 27. Salehi N, Attaran B, Zare-Mirakabad F, Ghadiri B, Esmaeili M, Shakaram M, et al. The outward shift of clarithromycin binding to the ribosome in mutant Helicobacter pylori strains. Helicobacter. 2020;25(6):12731.
- Mohammadi M, Kashani SS, Garoosi YT, Tazehkand SJ. In vivo measurement of Helicobacter pylori infection. Methods Mol Biol 2012;921:239-56.
- 29. Shans N, Esmaeili M, Abraheh K, Asadi Hanjani N, Farrokhi M, Sardarpour N, et al. Development of experimental platforms to assess helicobacter pylori HopQ interaction with host CEACAM molecules. Iran Biomed J. 2025;29(3):138-48.
- Cockerill, Franklin R. Performance standards for antimicrobial susceptibility testing; Twenty-first informational supplement. Dutton Park Health Sciences; Wayne, Pa: Clinical and Laboratory Standards Institute; 2011.
- 31. Dang BN, Graham DY. Helicobacter pylori infection and antibiotic resistance: A WHO high priority? Nat Rev Gastroenterol Hepatol. 2017;14(7):383-4.
- 32. Nielsen FS, Jensen KF, Larsen S, Rowland P. Purification and characterization of dihydroorotate dehydrogenase a from lactococcus lactis, crystallization and preliminary X-ray diffraction studies of the enzyme. Protein Sci. 1996;5(5):852-6.
- 33. Bouzari S, Oloomi M, Hatef Salmaninan A, Jafati A. Construction and expression of a fused gene for B subunit of the heat-labile and a truncated form of the heat-stable enterotoxins in Escherichia coli. Iran Biomed J. 1999;3:83-6.
- 34. Copeland RA, Davis JP, Dowling RL, Lombardo D, Murphy KB, Patterson TA. Recombinant human dihydroorotate dehydrogenase: Expression, purification, and characterization of a catalytically functional truncated enzyme. Arch Biochem Biophys. 1995;323(1):79-86.
- 35. Ullrich A, Knecht W, Fries M, Löffler M. Recombinant expression of N-terminal truncated mutants of the membrane bound mouse, rat and human flavoenzyme dihydroorotate dehydrogenase: A versatile tool to rate inhibitor effects? Eur J Biochem. 2001;268(6):1861-8.
- 36. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981;45(2):316-54.
- 37. Robinson PK. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015;59:1-41.
- 38. Chen SF, Perrella FW, Behrens DL, Papp LM. Inhibition of dihydroorotate dehydrogenase activity by brequinar sodium. Cancer Res. 1992;52(13):3521-7.
- 39. Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA. The immunosuppressive metabolite of leflunomide is a

- potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 1996;35(4):1270-3.
- 40. Greene S, Watanabe K, Braatz-Trulson J, Lou L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol. 1995;50(6):861-7.
- 41. Knecht W, Löffler M. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Biochem Pharmacol. 1998;56(9):1259-64.
- 42. Knecht W, Bergjohann U, Gonski S, Kirschbaum B, Löffler M. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem. 1996;240(1):292-301.
- 43. Ohishi T, Masuda T, Abe H, Hayashi C, Adachi H, Ohba S-I, et al. Monotherapy with a novel intervenolin derivative, AS-1934, is an effective treatment for Helicobacter pylori infection. Helicobacter. 2018;23(2):12470.
- Haque TS, Tadesse S, Marcinkeviciene J, Rogers MJ, Sizemore C, Kopcho LM, et al. Parallel synthesis of potent, pyrazole-based inhibitors of Helicobacter pylori dihydroorotate dehydrogenase. J Med Chem. 2002;45(21):4669-78.
- 45. Agarwal AA, Georgiades JD, Dranow DM, Lorimer DD, Edwards T, Barrett KF, et al. Crystal structure of

- dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide. Acta Crystallogr F Struct Biol Commun.2025;81(3):108-17.
- 46. Sousa FM, Pires P, Barreto A, Refojo PN, Silva MS, Fernandes PB, et al. Unveiling the membrane bound dihydroorotate: Quinone oxidoreductase from Staphylococcus aureus. Biochim Biophys Acta Bioenerg. 2023;1864(2):148948.
- 47. Wu Y, Seyedsayamdost M. Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem Biol. 2017;24(12):1437-44.
- 48. Pramisandi A, Dobashi K, Mori M, Nonaka K, Matsumoto A, Tokiwa T, et al. Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, talaromyces pinophilus BioMCC-f.T. 3979. J Gen Appl Microbiol 2020;66(5):273-8.
- 49. Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, et al. Hydrogen metabolism in Helicobacter pylori plays a role in gastric carcinogenesis through facilitating CagA translocation. MBio. 2016;7(4):1022-16.
- Kawada M, Inoue H, Ohba S-i, Hatano M, Amemiya M, Hayashi C, et al. Intervenolin, a new antitumor compound with anti-Helicobacter pylori activity, from Nocardia sp. ML96-86F2. J Antibiot. 2013;66(9):543-8.