Volume 27, Issue 4 (7-2023)                   IBJ 2023, 27(4): 183-190 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ansari S, Kolivand S, Salmanian S, Saghaeian Jazi M, A Najafi S M. Gαq Signaling Activates β-Catenin-Dependent Gene Transcription. IBJ 2023; 27 (4) :183-190
URL: http://ibj.pasteur.ac.ir/article-1-3890-en.html
Background: The canonical Wnt signal transduction or the Wnt/β-catenin pathway plays a crucial role in both carcinogenesis and development of animals. Activation of the Gαq class of Gα proteins positively regulates Wnt/β-catenin pathway, and expression of Gαq in human embryonic kidney 293 (HEK293T) cells or Xenopus oocytes leads to the inhibition of glycogen synthase kinase-3 beta and cellular accumulation of β-catenin. This study investigated whether Gαq-mediated cellular accumulation of β-catenin could affect the transcriptional activity of this protein.
Methods: HEK-293T and HT-29 cells were used for cell culture and transfection. Protein localization and quantification were assessed by using immunofluorescence microscopy, cell fractionation assay, and Western blotting analysis. Gene expression at the transcription level was examined by quantitative reverse transcriptase/real-time PCR method.
Results: Transcription of two cellular β-catenin target genes (c-MYC and CCND1) and the β-catenin/ T-cell factor reporter luciferase gene (TopFlash plasmid) significantly increased by Gαq activation. The Gαq-mediated increase in the expression level of the β-catenin-target genes was sensitive to the expression of a minigene encoding a specific Gαq blocking peptide. The results of cell fractionation and Western blotting experiments showed that activation of Gαq signaling increased the intracellular β-catenin protein level, but it blocked its membrane localization.
Conclusion: Our results reveal that the Gαq-dependent cellular accumulation of β-catenin can enhance β-catenin transcriptional activity.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and β-catenin signalling: diseases and therapies. Nature reviews genetics 2004; 5(9): 691-701. [DOI:10.1038/nrg1427]
2. Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006; 127(3): 469-480. [DOI:10.1016/j.cell.2006.10.018]
3. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nature reviews cancer 2007; 7(2): 79-94. [DOI:10.1038/nrc2069]
4. McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 1991; 254(5036): 1359-1361. [DOI:10.1126/science.1962194]
5. Peifer M, Pai LM, Casey M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Developmental Biology 1994; 166(2): 543-556. [DOI:10.1006/dbio.1994.1336]
6. Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997; 390(6658): 410-413. [DOI:10.1038/37138]
7. Liu T, DeCostanzo AJ, Liu X, Wang H y, Hallagan S, Moon RT, Malbon CC. G protein signaling from activated rat frizzled-1 to the β-catenin-lef-Tcf pathway. Science 2001; 292(5522):1718-1722. [DOI:10.1126/science.1060100]
8. Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Current biology 2005; 15(22):1989-1997. [DOI:10.1016/j.cub.2005.10.050]
9. Katanaev VL, Ponzielli R, Sémériva M, Tomlinson A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 2005; 120(1): 111-122. [DOI:10.1016/j.cell.2004.11.014]
10. Gao Y, Wang H y. Inositol pentakisphosphate mediates Wnt/β-catenin signaling. The journal of biological chemistry 2007; 282(36): 26490-26502. [DOI:10.1074/jbc.M702106200]
11. Koval A, Katanaev VL. Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochemical journal 2011; 433(3): 435-440. [DOI:10.1042/BJ20101878]
12. Najafi SMA. Activators of G proteins inhibit GSK-3β and stabilize β-catenin in Xenopus oocytes. Biochemical and biophysical research communications 2009; 382(2): 365-369. [DOI:10.1016/j.bbrc.2009.03.027]
13. Salmanian S, Najafi SMA, Rafipour M, Arjomand MR, Shahheydari H, Ansari S, Kashkooli L, Rasouli SJ, Saghaeian Jazi M, Minaei T. Regulation of GSK-3β and β-catenin by Gαq in HEK293T cells. Biochemical and biophysical research communications. 2010; 395(4): 577-582. [DOI:10.1016/j.bbrc.2010.04.087]
14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. The journal of biological chemistry 1951; 193(1): 265-275. [DOI:10.1016/S0021-9258(19)52451-6]
15. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997; 275(5307): 1787-1790. [DOI:10.1126/science.275.5307.1787]
16. Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726): 422-426. [DOI:10.1038/18884]
17. He T C, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998; 281(5382): 1509-1512. [DOI:10.1126/science.281.5382.1509]
18. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF‐20 and DKK1 are transcriptional targets of β‐catenin and FGF‐20 is implicated in cancer and development. The EMBO journal 2005; 24(1): 73-84. [DOI:10.1038/sj.emboj.7600460]
19. Gilchrist A, Bünemann M, Li A, Hosey MM, Hamm HE. A dominant-negative strategy for studying roles of G proteins in vivo. The journal of biological chemistry 1999; 274(10): 6610-6616. [DOI:10.1074/jbc.274.10.6610]
20. Gilchrist A, Vanhauwe JF, Li A, Thomas TO, Voyno Yasenetskaya T, Hamm HE. Gα minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. The journal of biological chemistry 2001; 276(28): 25672-25679. [DOI:10.1074/jbc.M100914200]
21. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacological reviews 2001; 53(2): 245-282.
22. Haraguchi K, Rodbell M. Carbachol-activated muscarinic (M1 and M3) receptors transfected into Chinese hamster ovary cells inhibit trafficking of endosomes. Proceedings of the national academy of sciences of the United States of America 1991; 88(14): 5964-5968. [DOI:10.1073/pnas.88.14.5964]
23. Grishina Z, Ostrowska E, Halangk W, Sahin Tóth M, Reiser G. Activity of recombinant trypsin isoforms on human proteinase‐activated receptors (PAR): mesotrypsin cannot activate epithelial PAR‐1,‐2, but weakly activates brain PAR‐1. The British journal of pharmacology 2005; 146(7): 990-999. [DOI:10.1038/sj.bjp.0706410]
24. Hussmann GP, Yasuda RP, Xiao Y, Wolfe BB, Kellar KJ. Endogenously expressed muscarinic receptors in HEK293 cells augment up-regulation of stably expressed α4β2 nicotinic receptors. The Journal of biological chemistry 2011; 286(46): 39726-39737. [DOI:10.1074/jbc.M111.289546]
25. Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. The American journal of pathology 2003; 162(5): 1503-1513. [DOI:10.1016/S0002-9440(10)64283-6]
26. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-1205. [DOI:10.1016/j.cell.2012.05.012]
27. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017; 169(6): 985-999. [DOI:10.1016/j.cell.2017.05.016]
28. Najafi SMA. Canonical wnt signaling (Wnt/β-Catenin Pathway): A potential target for cancer prevention and therapy. Iranian biomedical journal 2020; 24(5): 264-275. [DOI:10.29252/ibj.24.5.264]
29. Shevtsov SP, Haq S, Force T. Activation of β-catenin signaling pathways by classical G-protein-coupled receptors: mechanisms and consequences in cycling and non-cycling cells. Cell cycle 2006; 5(20): 2295-2300. [DOI:10.4161/cc.5.20.3357]
30. Bar Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S, Uziely B. G protein-coupled receptors in cancer. International journal of molecular sciences 2016; 17(8): 1320. [DOI:10.3390/ijms17081320]
31. Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigen ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Frontiers in pharmacolog 2018; 9: 431. [DOI:10.3389/fphar.2018.00431]
32. Lappano R, Maggiolini M. GPCRs and cancer. Acta pharmacologica sinica 2012; 33(3): 351-362. [DOI:10.1038/aps.2011.183]
33. O'hayre M, Vázquez Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G- proteins and G-protein-coupled receptors in cancer. Nature reviews cancer 2013; 13(6): 412-424. [DOI:10.1038/nrc3521]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb