Volume 27, Issue 4 (7-2023)                   IBJ 2023, 27(4): 158-166 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baradaran M, Mahdavinia M, Naderi Soorki M, Jorfi S. Identification, Characterization, and Modeling of a Bioinsecticide Protein Isolated from Scorpion Venom gland: A Three-Finger Protein. IBJ 2023; 27 (4) :158-166
URL: http://ibj.pasteur.ac.ir/article-1-3885-en.html
Background: The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components.
Methods: Transcriptome of venom gland of scorpion Mesbuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation.
Results: The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands.
Conclusion: This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.

1. Suhas R. Structure, function and mechanistic aspects of scorpion venom peptides-A boon for the development of novel therapeutics. European journal of medicinal chemistry reports 2022; 6: 100068. [DOI:10.1016/j.ejmcr.2022.100068]
2. Díaz García A, Varela D. Voltage-Gated K+/Na+ channels and scorpion venom toxins in cancer. Frontiers in pharmacology 2020; 11: 913. [DOI:10.3389/fphar.2020.00913]
3. Quintero Hernández V, Jiménez Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon 2013; 76: 328-342. [DOI:10.1016/j.toxicon.2013.07.012]
4. Romanova DY, Balaban PM, Nikitin ES. Sodium channels involved in the initiation of action potentials in invertebrate and mammalian neurons. Biophysica 2022; 2: 184-193. [DOI:10.3390/biophysica2030019]
5. Gamal El Din TM, Lenaeus MJ. Fenestropathy of voltage-gated sodium channels. Front pharmacol 2022; 13: 842645. [DOI:10.3389/fphar.2022.842645]
6. Dong K. Insect sodium channels and insecticide resistance. Invertebrate neuroscience 2007; 7(1): 17-30. [DOI:10.1007/s10158-006-0036-9]
7. Zhorov BS, Dong K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. Neurotoxicology 2017; 60: 171-177. [DOI:10.1016/j.neuro.2016.08.013]
8. Field LM, Emyr Davies TG, O'Reilly AO, Williamson MO, Wallace B A. Voltage-gated sodium channels as targets for pyrethroid insecticides. European biophysics journal 2017; 46(7): 675-679. [DOI:10.1007/s00249-016-1195-1]
9. Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez Ferber M. Resistance to bio-insecticides or how to enhance their sustainability: a review. Frontiers in plant science 2015; 6: 381. [DOI:10.3389/fpls.2015.00381]
10. Oliveira AS, Fantinel AL, Artuzo FD, Oliveira L, Singer RB, da Frota Júnior MLC, Dewes H, Talamini E. Applications of venom biodiversity in agriculture. EFB bioeconomy journal 2021; 1: 100010. [DOI:10.1016/j.bioeco.2021.100010]
11. Brown GB, Gaupp JE, Olsen RW. Pyrethroid insecticides: stereospecific allosteric interaction with the batrachotoxinin-A benzoate binding site of mammalian voltage-sensitive sodium channels. Molecular pharmacology 1988; 34(1): 54-59.
12. Lombet A, Mourre C, Lazdunski M. Interaction of insecticides of the pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain research 1988; 459(1): 44-53. [DOI:10.1016/0006-8993(88)90284-3]
13. Ortiz E, Possani LD. The unfulfilled promises of scorpion insectotoxins. The journal of venomous animals and toxins including tropical diseases 2015; 21: 16. [DOI:10.1186/s40409-015-0019-6]
14. Naderi Soorki M, Jalali A, Baradaran M. Improved system for constructing bacterial cDNA libraries from the venom glands of two iranian scorpions. Jundishapur university of medical sciences 2017; 12(3): e36065. [DOI:10.5812/jjnpp.36065]
15. Tamura K, Stecher G. Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular biology and evolution 2021; 38(7): 3022-3027. [DOI:10.1093/molbev/msab120]
16. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research 2007; 35(suppl_2): W407-W410. [DOI:10.1093/nar/gkm290]
17. Gupta CL, Akhtar S, Bajpaib P, Kandpal KN, Desai GS, Tiwari AK. Computational modeling and validation studies of 3-D structure of neuraminidase protein of H1N1 influenza A virus and subsequent in silico elucidation of piceid analogues as its potent inhibitors. EXCLI journal 2013; 12: 215-225.
18. Abraham MJ, Murtolad T, Schulzb R, Pall S, Smit J, Hessa B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2: 19-25. [DOI:10.1016/j.softx.2015.06.001]
19. Mafakher L, Rismani E, Rahimi A, Enayatkhani M, Azadmanesh K, Teimoori-Toolabi L. Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. Journal of biomolecular structure and dynamics 2022; 40(5): 2169-2188. [DOI:10.1080/07391102.2020.1835718]
20. Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophysical journal 2012; 102(8): 1907-15. [DOI:10.1016/j.bpj.2012.01.060]
21. Ahn HC, Juranić N, Macura S, Markley JL. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface. Journal of the American chemical society 2006; 128(13): 4398-4404. [DOI:10.1021/ja057773d]
22. Hutapea TPH, Madurani KA, Syahputra MY, Hudha MN, Asriana AN, Suprapto, et al. Albumin: Source, preparation, determination, applications, and prospects. Journal of Science: Advanced Materials and Devices 2023; 8(2): 100549. [DOI:10.1016/j.jsamd.2023.100549]
23. Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 2021; 37(1): 23-28. [DOI:10.1093/bioinformatics/btaa1102]
24. Panda S, Chandra G. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation 2012; 8(18): 891-896. [DOI:10.6026/97320630008891]
25. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proceedings of the national academy of sciences of the United States of America 1992; 89(22): 10910-10914. [DOI:10.1073/pnas.89.22.10910]
26. Nowicki P, Kuczer M, Schroeder G, Czarniewska E. Disruption of insect immunity using analogs of the pleiotropic insect peptide hormone Neb-colloostatin: a nanotech approach for pest control II. Scientific reports 2021; 11(1): 9459. [DOI:10.1038/s41598-021-87878-5]
27. Nachman RJ, Isaac R E, Coast G M, Holman G M. Aib-Containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic. Peptides 1997; 18(1): 53-57. [DOI:10.1016/S0196-9781(96)00233-1]
28. Kuczer M, Szeszel Fedorowicz W, Rosińskiand G, Konopińska D. New proctolin analogues: Synthesis and biological investigation in insects. Letters in peptide science 1998; 5(5): 387-389. [DOI:10.1007/BF02443492]
29. Yu, N, Benzi V, João Zotti M, Staljanssens D, Kaczmarek K, Zabrocki J, Nachman RJ, Smagghe G. Analogs of sulfakinin-related peptides demonstrate reduction in food intake in the red flour beetle, Tribolium castaneum, while putative antagonists increase consumption. Peptides 2013; 41: 107-112. [DOI:10.1016/j.peptides.2012.12.005]
30. Starratt AN, Lange AB, Orchard I, Nterminal modified analogs of HVFLRFamide with inhibitory activity on the locust oviduct. Peptides 2000; 21(2): 197-203. [DOI:10.1016/S0196-9781(99)00197-7]
31. Xie Y, Peng Kai Z, Tobe SS, Deng XL, Ling Y, Qin Wu X, Huang J, Zhang L, Ling Yang X. Design, synthesis and biological activity of peptidomimetic analogs of insect allatostatins. Peptides 2011; 32(3): 581-586. [DOI:10.1016/j.peptides.2010.10.016]
32. Nachman RJ, Muren JE, Isaac RE, Lundquist CT, Karlsson A, Nässel DR. An aminoisobutyric acid-containing analogue of the cockroach tachykinin-related peptide, LemTRP-1, with potent bioactivity and resistance to an insect angiotensin-converting enzyme. Regulatory peptides 1998; 74(1): 61-66. [DOI:10.1016/S0167-0115(98)00019-6]
33. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein engineering 1990; 4(2): 155-161. [DOI:10.1093/protein/4.2.155]
34. Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of instability index for in vitro protein stability prediction. Protein and peptide letters 2019; 26(5): 339-347. [DOI:10.2174/0929866526666190228144219]
35. Assadi Porter FM, Aceti DJ, Markley JL. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Archives of biochemistry and biophysics 2000; 376(2): 259-265. [DOI:10.1006/abbi.2000.1726]
36. Ceci LR, Volpicella M, Rahbé Y, Gallerani R, Beekwilder J, Jongsma MA. Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids. The Plant journal 2003; 33(3): 557-566. [DOI:10.1046/j.1365-313X.2003.01645.x]
37. Loret EP, Martin-Eauclaire M F, Mansuelle P, Sampieri F, Granie C, Rochat H. An anti-insect toxin purified from the scorpion Androctonus australis Hector also acts on the alpha- and beta-sites of the mammalian sodium channel: sequence and circular dichroism study. Biochemistry 1991; 30(3): 633-640. [DOI:10.1021/bi00217a007]
38. Tarr DE. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC research notes 2016; 9(1): 490. [DOI:10.1186/s13104-016-2291-0]
39. Kini RM, Doley R. Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon 2010; 56(6): 855-867. [DOI:10.1016/j.toxicon.2010.07.010]
40. Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochemical pharmacology 2020; 181: 114105. [DOI:10.1016/j.bcp.2020.114105]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb