Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 59-70 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Voronkov N S, Popov S V, Naryzhnaya N V, Prasad N R, Petrov I M, Kolpakov V V, et al . Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IBJ 2024; 28 (2 and 3) :59-70
URL: http://ibj.pasteur.ac.ir/article-1-3872-en.html
Abstract:  
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Type of Study: Review Article | Subject: Related Fields

References
1. Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013; 369(10):901-9. [DOI:10.1056/NEJMoa1208200]
2. Fabris E, Kilic S, Schellings DAAM, Berg JMT, Kennedy MW, Houwelingen KGV, et al. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart. 2017; 103(19):1515-20. [DOI:10.1136/heartjnl-2017-311181]
3. Vaidya SR, Devarapally SR, Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc Diagn Ther. 2017; 7(1):16-26. [DOI:10.21037/cdt.2016.08.06]
4. Olier I, Sirker A, Hildick-Smith DJR, Kinnaird T, Ludman P, Belder MAD, et al. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart. 2018; 104(20):1683-90. [DOI:10.1136/heartjnl-2017-312366]
5. Maslov LN, Barbarash OL. Pharmacological approaches to limiting the infarct zone size in patients with acute myocardial infarction: Analysis of clinical data. Eks Klin Farmakol. 2018; 81:34-41.
6. Maslov LN, Popov SV, Mukhomedzyanov AV, Derkachev IA, Ryabov VV, Boshchenko AA, et al. Pharmacological approaches to limit ischemic and reperfusion injuries of the heart: analysis of experimental and clinical data on P2Y12 receptor antagonists. Korean Circ J. 2022; 52(10):737-54. [DOI:10.4070/kcj.2022.0162]
7. de Miranda DC, de Oliveira Faria G, Hermidorff MM, dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways. Curr Vasc Pharmacol. 2021; 19(5):499-524. [DOI:10.2174/1570161119666201120160619]
8. Turchinskiǐ VI. Cardiological aspects of human adaptation in the Far North. Vestn Akad Med Nauk SSSR. 1979;6:23-32.
9. Zubri GL, Klimov EA. On arterial pressure in the population of Noril'sk. Sov Med. 1964; 27:135-8.
10. Orekhov KV. Ekstremal'nye faktory Kraǐnego Severa i voprosy zdorov'ia naseleniia étogo raǐona. Vestn Akad Med Nauk SSSR. 1979; 6:73-82.
11. Skavronskaia TV, Leus AI, Fedoseeva LA, Kumanovskaia TA, Preobrazhenskiǐ DV. Prevalence of hypertension among gas industry employees in Far North. Kardiologiia. 2005; 45(3):84.
12. Krivoschekov SG, Sobakin AK, Fomin AN. Estimation of functional state and labour efficiency of shift workers in conditions of the Far North. Int J Circumpolar Health. 2004; 63 Suppl 2:349-52. [DOI:10.3402/ijch.v63i0.17933]
13. Petrov RA, Rybkin IA. [Ischemic heart disease and arterial hypertension in Yakutsk (clinico-epidemiologic study)]. 1977; 17(3):63-70.
14. Turchinskiĭ VI, Sakharova SS. [Characteristics of clinical course of myocardial infarct in young persons under conditions of an industrial city in the Far North]. Kardiologiia. 1979; 19(5):39-45.
15. Alekseev VP, Ivanov KI, Konstantinov VV, Zhdanov VS, Akimova AI, Osipova ON, et al. [Epidemiology of ischemic heart disease and peculiarities of atherosclerosis in male residents of Yakutsk]. Ter Arkh. 2001; 73(1):
16. Oganov RG, Maslennikova GI. [Prevention of cardiovascular diseases-real way to improvement of demographic situation in Russia]. Kardiologiia. 2007; 47(1):4-7.
17. Tikhonov DG, Nikolaev VP, Sedalischev VI. [Some problems of pathogenesis and clinical symptoms of atherosclerosis (coronary heart disease, hypertension) in the far north]. Ter Arkh. 2011; 83(1):63-9.
18. Melnikov VN. Life span of people who died from cardiovascular diseases in Siberia: a comparative study of two populations. Int J Circumpolar Health. 2003; 62(3):296-307. [DOI:10.3402/ijch.v62i3.17566]
19. Bjerregaard P, Dyerberg J. Mortality from ischaemic heart disease and cerebrovascular disease in greenland. Int J Epidemiol. 1988; 17(3):514-9. [DOI:10.1093/ije/17.3.514]
20. Ornato JP, Peberdy MA, Chandra NC, Bush DE. Seasonal pattern of acute myocardial infarction in the national registry of myocardial infarction. J Am Coll Cardiol. 1996; 28(7):1684-8. [DOI:10.1016/S0735-1097(96)00411-1]
21. Spencer FA, Goldberg RJ, Becker RC, Gore JM. Seasonal distribution of acute myocardial infarction in the second national registry of myocardial infarction. J Am Coll Cardiol. 1998; 31(6):1226-33. [DOI:10.1016/S0735-1097(98)00098-9]
22. Panagiotakos DB, Chrysohoou C, Pitsavos C, Nastos P, Anadiotis A, Tentolouris C, et al. Climatological variations in daily hospital admissions for acute coronary syndromes. Int J Cardiol. 2004; 94(2-3):229-33. [DOI:10.1016/j.ijcard.2003.04.050]
23. Kriszbacher I, Bódis J, Csoboth I, Boncz I. The occurrence of acute myocardial infarction in relation to weather conditions. 2009; 135(1):136-8. [DOI:10.1016/j.ijcard.2008.01.048]
24. Shiue I, Perkins DR, Bearman N. Hospital admissions of hypertension, angina, myocardial infarction and ischemic heart disease peaked at physiologically equivalent temperature 0 °C in Germany in 2009-2011. Environ Sci Pollut Res. 2016; 23(1):298-306. [DOI:10.1007/s11356-015-5224-x]
25. Donaldson GC, Robinson D, Allaway SL. An analysis of arterial disease mortality and BUPA health screening data in men, in relation to outdoor temperature. Clin Sci(Lond).1997; 92(3):261-8. [DOI:10.1042/cs0920261]
26. Donaldson GC, Tchernjavskii VE, Ermakov SP, Bucher K, Keatinge WR. Winter mortality and cold stress in Yekaterinburg, Russia: Interview survey. BMJ. 1998; 316(7130):514-8. [DOI:10.1136/bmj.316.7130.514]
27. Crawford VLS, McCann M, Stout RW. Changes in seasonal deaths from myocardial infarction. QJM. 2003; 96(1):45-52. [DOI:10.1093/qjmed/hcg005]
28. Näyhä S. Environmental temperature and mortality. Int J Circumpolar Health. 2005; 64(5):451-8. [DOI:10.3402/ijch.v64i5.18026]
29. Barnett AG, Dobson AJ, McElduff P, Salomaa V, Kuulasmaa K, Sans S. Cold periods and coronary events: an analysis of populations worldwide. J Epidemiol Community Heal. 2005; 59(7):551-7. [DOI:10.1136/jech.2004.028514]
30. Urban A, Kyselý J. Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic. Int J Biometeorol. 2018; 62(1):85-96. [DOI:10.1007/s00484-015-1055-1]
31. Marchant B, Donaldson G, Mridha K, Scarborough M, Timmis AD. Mechanisms of cold intolerances in patients with angina. J Am Coll Cardiol. 1994; 23(3):630-6. [DOI:10.1016/0735-1097(94)90747-1]
32. Keatinge WR, Coleshaw SRK, Cotter F, Mattock M, Murphy M, Chelliah R. Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: Factors in mortality from coronary and cerebral thrombosis in winter. Br Med J. 1984; 289(6456):1405-8. [DOI:10.1136/bmj.289.6456.1405]
33. Sun Z, Bello-Roufai M, Wang X. RNAi inhibition of mineralocorticoid receptors prevents the development of cold-induced hypertension. Am J Physiol Circ Physiol. 2008; 294(4):H1880-7. [DOI:10.1152/ajpheart.01319.2007]
34. Tsibulnikov SY, Maslov LN, Naryzhnaya NV, Ivanov VV, Bushov YuV, Voronkov NS, et al. Impact of cold adaptation on cardiac tolerance to ischemia/reperfusion. Role of glucocorticoid and thyroid hormones. Gen Physiol Biophys. 2019; 38(3):245-51. [DOI:10.4149/gpb_2019002]
35. Gapon LI, Shurkevich NP, Vetoshkin AS. [Structural and functional changes in the heart and 24-hour arterial pressure profile in patients with arterial hypertension in the Far North]. Klin Med (Mosk). 2009; 87(9):23-9.
36. Shechtman O, Papanek PE, Fregly MJ. Reversibility of cold-induced hypertension after removal of rats from cold. Can J Physiol Pharmacol. 1990; 68(7):830-5. [DOI:10.1139/y90-126]
37. Freegly MJ, Shechtman O, Bergen P van, Reeber C, Papanek PE. Changes in blood pressure and dipsogenic responsiveness to angiotensin II during chronic exposure of rats to cold. Pharmacol Biochem Behav. 1991; 38(4):837-42. [DOI:10.1016/0091-3057(91)90251-V]
38. Bergen P Van, Fregly MJ, Papanek PE. Effect of a reduction in sodium intake on cold-induced elevation of blood pressure in the rat. Proc Soc Exp Biol Med. 1992; 200(4):472-9. [DOI:10.3181/00379727-200-43456]
39. Tibenska V, Benesova A, Vebr P, Liptakova A, Hejnová L, Elsnicová B, et al. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J Appl Physiol. 2020; 128(4):1023-32. [DOI:10.1152/japplphysiol.00511.2019]
40. Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol. 2013; 168(2):296-317. [DOI:10.1111/j.1476-5381.2012.02195.x]
41. Ennis I, Aiello E, Cingolani H, Perez N. The autocrine/paracrine loop after myocardial stretch: mineralocorticoid receptor activation. Curr Cardiol Rev. 2013; 9(3):230-40. [DOI:10.2174/1573403X113099990034]
42. Feniman De Stefano GMM, Zanati-Basan SG, De Stefano LM, Silva VROE, Xavier PS, Barretti P, et al. Aldosterone is associated with left ventricular hypertrophy in hemodialysis patients. Ther Adv Cardiovasc Dis. 2016; 10(5):304-13. [DOI:10.1177/1753944716644583]
43. Frangogiannis NG. Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovasc Res. 2017; 113(12):1453-64. [DOI:10.1093/cvr/cvx146]
44. Seo K, Parikh VN, Ashley EA. Stretch-induced biased signaling in angiotensin II Type 1 and apelin receptors for the mediation of cardiac contractility and hypertrophy. Front Physiol. 2020; 11:181. [DOI:10.3389/fphys.2020.00181]
45. Wang L, Tan A, An X, Xia Y, Xie Y. Quercetin dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed Pharmacother. 2020; 127:110205. [DOI:10.1016/j.biopha.2020.110205]
46. Krylov IF, Tigranian RA. [Hormonal metabolic status of the human body under the conditions of the Far North]. Kosm Biol Aviakosm Med. 1986; 20(5):85-8.
47. Bligh Tynan ME, Bhagwat SA, Castonguay TW. The effects of chronic cold exposure on diurnal corticosterone and aldosterone rhythms in sprague-dawley rats. Physiol Behav. 1993; 54(2):363-7. [DOI:10.1016/0031-9384(93)90124-X]
48. Janský L, Vybíral S, Trubačová M, OkrouhlÍk J. Modulation of adrenergic receptors and adrenergic functions in cold adapted humans. Eur J Appl Physiol. 2008; 104(2):131-5. [DOI:10.1007/s00421-007-0627-0]
49. Obut TA, Saryg SK, Ovsukova MV, Dementeva TU, Obut ET, Erdinieva TA. Effect of dehydro-epiandrosterone sulfate on aldosterone level during stress exposures: role of μ-opioid receptors. Bull Exp Biol Med. 2012; 152(6):696-8. [DOI:10.1007/s10517-012-1609-8]
50. Baron A, Riesselmann A, Fregly MJ. Effect of chronic treatment with clonidine and spironolactone on cold-induced elevation of blood pressure. Pharmacology. 1991; 43(4):173-86. [DOI:10.1159/000138844]
51. Wang X, Sun Z, Cade R. Prolonged attenuation of cold-induced hypertension by adenoviral delivery of renin antisense. Kidney Int. 2005; 68(2):680-7. [DOI:10.1111/j.1523-1755.2005.00446.x]
52. Cassis LA. Role of angiotensin II in brown adipose thermogenesis during cold acclimation. Am J Physiol Metab. 1993; 265(6 Pt 1):E860-5. [DOI:10.1152/ajpendo.1993.265.6.E860]
53. Cassis L, Laughter A, Fettinger M, Akers S, Speth R, Burke G, et al. Cold exposure regulates the renin-angiotensin system. J Pharmacol Exp Ther. 1998; 286(2):718-26.
54. Shechtman O, Fregly MJ, Van Bergen P, Papanek PE. Prevention of cold-induced increase in blood pressure of rats by captopril. Hypertension. 1991; 17(6 Pt 1):763-70. [DOI:10.1161/01.HYP.17.6.763]
55. Fregly MJ, Rossi F, Bergen P, Brummermann M, Cade JR. Effect of chronic treatment with losartan potassium (DuP 753) on the elevation of blood pressure during chronic exposure of rats to cold. Pharmacology. 1993; 46(4):198-205. [DOI:10.1159/000139046]
56. Fregly MJ, Brummermann M. Effect of chronic exposure to cold on vascular responsiveness to phenylephrine and angiotensin II. Pharmacology. 1993; 47(4):237-43. [DOI:10.1159/000139103]
57. Shechtman O, Sun Z, Fregly MJ, Katovich MJ. Increased tail artery vascular responsiveness to angiotensin II in cold- treated rats. Can J Physiol Pharmacol. 1999; 77(12):974-9. [DOI:10.1139/y99-107]
58. Sun Z, Cade R, Zhang Z, Alouidor J, Van H. Angiotensinogen gene knockout delays and attenuates cold-induced hypertension. Hypertension. 2003; 41(2):322-7. [DOI:10.1161/01.HYP.0000050964.96018.FA]
59. Chen GF, Sun Z. Effects of chronic cold exposure on the endothelin system. J Appl Physiol. 2006; 100(5):1719-26. [DOI:10.1152/japplphysiol.01407.2005]
60. Zhang Y, Li L, Hua Y, Nunn JM, Dong F, Yanagisawa M, et al. Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Biol. 2012; 4(2):97-107. [DOI:10.1093/jmcb/mjs002]
61. Fregly MJ, Rossi F, Sun Z, Tümer N, Cade JR, Hegland D, et al. Effect of chronic treatment with prazosin and L-arginine on the elevation of blood pressure during cold exposure. Pharmacology. 1994; 49(6):351-62. [DOI:10.1159/000139254]
62. Armstrong DW. Metabolic and endocrine responses to cold air in women differing in aerobic capacity. Med Sci Sport Exerc. 1998; 30(6):880-4. [DOI:10.1097/00005768-199806000-00016]
63. Mineo PM, Cassell EA, Roberts ME, Schaeffer PJ. Chronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice. Comp Biochem Physiol A Mol Integr Physiol. 2012; 161(4):395-400. [DOI:10.1016/j.cbpa.2011.12.012]
64. Tsibulnikov SY, Maslov LN, Ivanov VV, Naryzhnaya NV, Tsibulnikova MR. [Infarct-limiting effect of adaptation to continuous cold exposure]. Ross Fiziol zhurnal Im IM Sechenova. 2016; 102(11):1363-8.
65. Maslov LN, Naryzhnaia NV. [Impact of long-term adaptation to cold on the state of cardiovascular system]. Ross Fiziol Zh Im I M Sechenova. 2015; 101(5):525-37.
66. Tsibulnikov S, Maslov L, Voronkov N, Oeltgen P. Thyroid hormones and the mechanisms of adaptation to cold. Hormones. 2020; 19(3):329-39. [DOI:10.1007/s42000-020-00200-2]
67. Lu S, Xu D. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: Role of TRPV1/AMPK-mediated autophagy. Biochem Biophys Res Commun. 2013; 442(1-2):8-15. [DOI:10.1016/j.bbrc.2013.10.128]
68. Jankovic A, Korac A, Buzadzic B, Otasevic V, Stancic A, Vucetic M, et al. Endocrine and metabolic signaling in retroperitoneal white adipose tissue remodeling during cold acclimation. J Obes. 2013; 2013: 937572. [DOI:10.1155/2013/937572]
69. Zhao ZJ, Chi QS, Cao J, Wang DH. Seasonal changes of body mass and energy budget in striped hamsters: The role of leptin. Physiol Biochem Zool. 2014; 87(2):245-56. [DOI:10.1086/674974]
70. Kinoshita K, Ozaki N, Takagi Y, Murata Y, Oshida Y, Hayashi Y. Glucagon is essential for adaptive thermogenesis in brown adipose tissue. Endocrinology. 2014; 155(9):3484-92. [DOI:10.1210/en.2014-1175]
71. Egecioglu E, Anesten F, Schéle E, Palsdottir V. Interleukin-6 is important for regulation of core body temperature during long-term cold exposure in mice. Biomed Rep. 2018; 9(3):206-12. [DOI:10.3892/br.2018.1118]
72. Ketzer LA, Arruda AP, Carvalho DP, de Meis L. Cardiac sarcoplasmic reticulum Ca 2+ -ATPase: heat production and phospholamban alterations promoted by cold exposure and thyroid hormone. Am J Physiol Circ Physiol. 2009; 297(2):H556-63. [DOI:10.1152/ajpheart.00302.2009]
73. Vucetic M, Otasevic V, Korac A, Stancic A, Jankovic A, Markelic M, et al. Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochim Biophys Acta. 2011; 1810(12):1252-61. [DOI:10.1016/j.bbagen.2011.09.007]
74. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015; 116(4):674-99. [DOI:10.1161/CIRCRESAHA.116.305348]
75. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. APS. 2003; 83(4):1113-51. [DOI:10.1152/physrev.00009.2003]
76. Maslov LN, Tsibulnikov SY, Prokudina ES, Popov SV, Boshchenko AA, Singh N, et al. Trigger, signaling mechanism and end effector of cardioprotective effect of remote postconditioning of heart. Curr Cardiol Rev. 2019; 15(3):177-87. [DOI:10.2174/1573403X15666190226095820]
77. Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, et al. A review of humoral factors in remote preconditioning of the heart. J Cardiovasc Pharmacol Ther. 2019; 24(5):403-21. [DOI:10.1177/1074248419841632]
78. Maslov LN, Vychuzhanova EA. The role of the sympathoadrenal system in adaptation to cold. Neurosci Behav Physiol. 2016; 46(5):589-600. [DOI:10.1007/s11055-016-0283-0]
79. Asimakis GK, Inners-Mcbride K, Conti VR, Yang CJ. Transient beta adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction. Cardiovasc Res. 1994; 28(11):1726-34. [DOI:10.1093/cvr/28.11.1726]
80. Minatoguchi S, Uno Y, Kariya T, Arai M, Wang N, Hashimoto K, et al. Cross-talk among noradrenaline, adenosine and protein kinase C in the mechanisms of ischemic preconditioning in rabbits. J Cardiovasc Pharmacol. 2003; 41 Suppl 1:S39-47.
81. Bankwala Z, Hale SL, Kloner RA. Alpha-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation. 1994; 90(2):1023-8. [DOI:10.1161/01.CIR.90.2.1023]
82. Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM. Alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res. 1994; 75(3):576-85. [DOI:10.1161/01.RES.75.3.576]
83. Karliner JS, Honbo N, Epstein CJ, Xian M, Lau YFC, Gray MO. Neonatal mouse cardiac myocytes exhibit cardioprotection induced by hypoxic and pharmacologic preconditioning and by transgenic overexpression of human Cu/Zn superoxide dismutase. J Mol Cell Cardiol. 2000; 32(10):1779-86. [DOI:10.1006/jmcc.2000.1212]
84. Ravingerová T, Pancza D, Ziegelhoffer A, Styk J. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: The role of α-adrenergic stimulation and K(ATP) channels. Physiol Res. 2002; 51(2):109-19. [DOI:10.33549/physiolres.930186]
85. Yabe KI, Ishishita H, Tanonaka K, Takeo S. Pharmacologic preconditioning induced by beta-adrenergic stimulation is mediated by activation of protein kinase C. J Cardiovasc Pharmacol. 1998; 32(6):962-8. [DOI:10.1097/00005344-199812000-00013]
86. Salie R, Moolman JA, Lochner A. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol. 2012; 107(5):281. [DOI:10.1007/s00395-012-0281-5]
87. Tibenská V, Marvanova A, Elsnicová B, Hejnova L, Vebr P, Novotný J, et al. The cardioprotective effect persisting during recovery from cold acclimation is mediated by the β2-adrenoceptor pathway and Akt activation. J Appl Physiol. 2021; 130(3):746-55. [DOI:10.1152/japplphysiol.00756.2020]
88. Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective thyroid hormone receptor-beta (TRβ) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front Med. 2020; 7:331. [DOI:10.3389/fmed.2020.00331]
89. Seara FAC, Maciel L, Barbosa RAQ, Rodrigues NC, Silveira ALB, Marassi MP, et al. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. PLoS One. 2018; 13(1):e0190355. [DOI:10.1371/journal.pone.0190355]
90. Jeddi S, Zaman J, Zadeh-Vakili A, Zarkesh M, Ghasemi A. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene. 2016; 580(2):169-76. [DOI:10.1016/j.gene.2016.01.014]
91. Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, et al. In vivo selective expression of thyroid hormone receptor α1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol. 2014; 307(3):R340-6. [DOI:10.1152/ajpregu.00449.2013]
92. Kumar A, Taliyan R, Sharma PL. Evaluation of thyroid hormone induced pharmacological preconditioning on cardiomyocyte protection against ischemic-reperfusion injury. Indian J Pharmacol. 2012; 44(1):68-72. [DOI:10.4103/0253-7613.91870]
93. Abohashem-Aly AA, Meng X, Li J, Sadaria MR, Ao L, Wennergren J, et al. DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia. J Surg Res. 2011; 171(2):379-85. [DOI:10.1016/j.jss.2011.04.009]
94. Lieder HR, Braczko F, Gedik N, Stroetges M, Heusch G, Kleinbongard P. Cardioprotection by post-conditioning with exogenous triiodothyronine in isolated perfused rat hearts and isolated adult rat cardiomyocytes. Basic Res Cardiol. 2021; 116(1):27. [DOI:10.1007/s00395-021-00868-6]
95. Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev. 2018; 14(4):290-300. [DOI:10.2174/1573403X14666180702152436]
96. Bozhko AP, Gorodetskaia IV. [Importance of thyroid hormones in the realization of the protective effects of cold adaptation]. Patol Fiziol i Eksp Ter. 1994; 4:29-32.
97. Wang X, Che H, Zhang W, Wang J, Ke T, Cao R, et al. Effects of mild chronic intermittent cold exposure on rat organs. Int J Biol Sci. 2015; 11(10):1171-80. [DOI:10.7150/ijbs.12161]
98. Schmidt MC, Askew EW, Roberts DE, Prior RL, Ensign WY, Hesslink RE. Oxidative stress in humans training in a cold, moderate altitude environment and their response to a phytochemical antioxidant supplement. Wilderness Environ Med. 2002; 13(2):94-105. [DOI:10.1580/1080-6032(2002)013[0094:OSIHTI]2.0.CO;2]
99. Terblanche SE, Masondo TC, Nel W. Effects of chronic cold exposure on the activities of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in rat tissues (Rattus norvegicus). Comp Biochem Physiol B Biochem Mol Biol. 2000; 127(3):319-24. [DOI:10.1016/S0305-0491(00)00269-8]
100. Selman C, McLaren JS, Himanka MJ, Speakman JR. Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radic Biol Med. 2000; 28(8):1279-85. [DOI:10.1016/S0891-5849(00)00263-X]
101. Emirbekov EZ, L'vova SP, Gasangadzhieva AG. [Effect of repeated cold stress on intensity of lipid peroxidation and tissue antioxidant system]. Bull Exp Biol Med. 1998;125(4):339-41. [DOI:10.1007/BF02499150]
102. Bal NC, Maurya SK, Pani S, Sethy C, Banerjee A, Das S, et al. Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners? Biosci Rep. 2017; 37(5):BSR2017108 [DOI:10.1042/BSR20171087]
103. Chytilová A, Borchert GH, Mandíková-Alánová P, Hlaváčková M, Kopkan L, Khan MAH, et al. Tumour necrosis factor- α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiol. 2015; 214(1):97-108. [DOI:10.1111/apha.12489]
104. Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sanganalmath SK, et al. The role of TNF-α receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol. 2008; 45(6):735-41. [DOI:10.1016/j.yjmcc.2008.08.014]
105. Li HX, Cui XL, Xue FS, Yang GZ, Liu YY, Liu Q, et al. Inhibition of glycogen synthase kinase-3β is involved in cardioprotection by α7nAChR agonist and limb remote ischemic postconditionings. 2018; 38(5):BSR20181315. [DOI:10.1042/BSR20181315]
106. Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res. 2012; 95(4):487-94. [DOI:10.1093/cvr/cvs212]
107. Manukhin BN, Anan'ev VN, Kichikulova TP, Anan'eva ON. M-cholinergic response of arterial pressure in rabbit small intestine blood vessels during cold adaptation. Dokl Biol Sci. 2003; 391:312-4. [DOI:10.1023/A:1025190214988]
108. Gorbunov AS, Maslov LN, Jaggi AS, Singh N, Petrocellis LD, Boshchenko AA, et al. Physiological and pathological role of TRPV1, TRPV2 and TRPV4 channels in heart. Curr Cardiol Rev. 2019; 15(4):244-51. [DOI:10.2174/1573403X15666190307112326]
109. Nazari A, Sadr SS, Faghihi M, Azizi Y, Hosseini M-J, Mobarra N, et al. Vasopressin attenuates ischemia-reperfusion injury via reduction of oxidative stress and inhibition of mitochondrial permeability transition pore opening in rat hearts. Eur J Pharmacol. 2015; 760:96-102. [DOI:10.1016/j.ejphar.2015.04.006]
110. Z Zeisberger E, Roth J, Simon E. Changes in water balance and in release of arginine vasopressin during thermal adaptation in guinea-pigs. Pflügers Arch. 1988; 412(3):285-91. [DOI:10.1007/BF00582510]
111. Takagi S, Kihara Y, Sasayama S, Mitsuiye T. Slow inactivation of cardiac L-type Ca2+ channel induced by cold acclimation of guinea pig. Am J Physiol. 1998; 274(2): R348-56. [DOI:10.1152/ajpregu.1998.274.2.R348]
112. Fliegner D, Westermann D, Riad A, Schubert C, Becher E, Fielitz J, et al. Up-regulation of PPARγ in myocardial infarction. Eur J Heart Fail. 2008; 10(1):30-8. [DOI:10.1016/j.ejheart.2007.11.005]
113. Zhong C Bin, Chen X, Zhou XY, Wang XB. The role of peroxisome proliferator-activated receptor γ in mediating cardioprotection against ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2018; 23(1):46-56. [DOI:10.1177/1074248417707049]
114. Stancic A, Buzadzic B, Korac A, Otasevic V, Jankovic A, Vucetic M, et al. Regulatory role of PGC-1α/PPAR signaling in skeletal muscle metabolic recruitment during cold acclimation. J Exp Biol. 2013; 216(Pt 22):4233-41. [DOI:10.1242/jeb.089334]
115. Tsibulnikov SY, Maslov LN, Naryzhnaya NV, Ma H, Lishmanov YB, Oeltgen PR, et al. Role of protein kinase C, PI3 kinase, tyrosine kinases, no-synthase, KATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia. Gen Physiol Biophys. 2018; 37(5):537-47. [DOI:10.4149/gpb_2018013]
116. Kikuchi Utsumi K, Gao B, Ohinata H, Hashimoto M, Yamamoto N, Kuroshima A. Enhanced gene expression of endothelial nitric oxide synthase in brown adipose tissue during cold exposure. Am J Physiol Regul Integr Comp Physiol. 2002; 282(2):R623-6. [DOI:10.1152/ajpregu.00310.2001]
117. Hostrup A, Christensen GL, Bentzen BH, Liang B, Aplin M, Grunnet M, et al. Functionally selective AT 1 receptor activation reduces ischemia reperfusion injury. Cell Physiol Biochem. 2012; 30(3):642-52. [DOI:10.1159/000341445]
118. Nuñez RE, Javadov S, Escobales N. Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch Eur J Physiol. 2018; 470(9):1391-403. [DOI:10.1007/s00424-018-2153-9]
119. Nuñez RE, Castro M, Javadov S, Escobales N. Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular postischemic recovery. J Cardiovasc Pharmacol. 2014; 64(2):172-9. [DOI:10.1097/FJC.0000000000000103]
120. Nuñez RE, Javadov S, Escobales N. Angiotensin II-preconditioning is associated with increased PKCε/PKCδ ratio and prosurvival kinases in mitochondria. Clin Exp Pharmacol Physiol. 2017; 44(12):1201-12. [DOI:10.1111/1440-1681.12816]
121. Lange SA, Wolf B, Schober K, Wunderlich C, Marquetant R, Weinbrenner C, et al. Chronic angiotensin II receptor blockade induces cardioprotection during ischemia by increased PKC-ε expression in the mouse heart. J Cardiovasc Pharmacol. 2007; 49(1):46-55. [DOI:10.1097/FJC.0b013e31802c2f77]
122. Wang P, Gallagher KP, Downey JM, Cohen MV. Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolation rabbit heart. J Mol Cell Cardiol. 1996; 28(3):579-88. [DOI:10.1006/jmcc.1996.0054]
123. Bugge E, Ytrehus K. Endothelin-1 can reduce infarct size through protein kinase C and KATP channels in the isolated rat heart. Cardiovasc Res. 1996; 32(5):920-9. [DOI:10.1016/S0008-6363(96)00129-0]
124. Zhang M, Gu WW, Hong XY. Involvement of endothelin 1 in remote preconditioning-induced cardioprotection through connexin 43 and Akt/GSK-3β signaling pathway. Sci Rep. 2018; 8(1):10941. [DOI:10.1038/s41598-018-29196-x]
125. Tamareille S, Terwelp M, Amirian J, Felli P, Zhang XQ, Barry WH, et al. Endothelin-1 release during the early phase of reperfusion is a mediator of myocardial reperfusion injury. Cardiology. 2013; 125(4):242-9. [DOI:10.1159/000350655]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb