Volume 27, Issue 2 And 3 (3-2023)                   IBJ 2023, 27(2 And 3): 108-116 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Torkashvand F, Mehranfar M, Rashidi Gero M, Jafarian P, Mirabzadeh E, Azarian B, et al . Trastuzumab Charge Variants: a Study on Physicochemical and Pharmacokinetic Properties. IBJ 2023; 27 (2 and 3) :108-116
URL: http://ibj.pasteur.ac.ir/article-1-3837-en.html
Background: Post-translational modifications in bioprocessing and storage of recombinant mAbs are the main sources of charge variants. While the profile of these kinds of variants is considered an important attribute for the therapeutic mAbs, there is controversy about their direct role in safety and efficacy. In this study, the physicochemical and pharmacokinetic (PK) properties of the separated charge variants belonging to a trastuzumab potential biosimilar, were examined.
Methods: The acidic peaks, basic peaks, and main variants of trastuzumab were separated and enriched by semi-preparative weak cation exchange. A panel of analytical techniques was utilized to characterize the physicochemical properties of these variants. The binding affinity to HER2 and FcγRs and the PK parameters were evaluated for each variant.
Results: Based on the results, the charge variants of the proposed biosimilar had no significant influence on the examined efficacy and PK parameters.
Conclusion: During the development and production of biosimilar monoclonal antibodies, evaluating the effect of their charge variants on efficacy and PK parameters is needed.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. Journal of biomedical science 2020; 27(1): 1. [DOI:10.1186/s12929-019-0592-z]
2. Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Current pharmaceutical biotechnology 2008; 9(6): 468-481. [DOI:10.2174/138920108786786402]
3. Torkashvand F, Vaziri B. Main quality attributes of monoclonal antibodies and effect of cell culture components. Iranian biomedical journal 2017; 21(3): 131-141. [DOI:10.18869/acadpub.ibj.21.3.131]
4. Ruppen I, Beydon M-E, Solís C, Sacristán D, Vandenheede I, Ortiz A, Sandra K, Adhikary L. Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization. Biologicals 2022; 77: 1-15. [DOI:10.1016/j.biologicals.2021.08.002]
5. Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2019; 11(2): 239-264. [DOI:10.1080/19420862.2018.1553476]
6. Liu H, Ponniah G, Zhang HM, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 2014; 6(5): 1145-1154. [DOI:10.4161/mabs.29883]
7. Hintersteiner B, Lingg N, Janzek E, Mutschlechner O, Loibner H, Jungbauer A. Microheterogeneity of therapeutic monoclonal antibodies is governed by changes in the surface charge of the protein. Biotechnology journal 2016; 11(12): 1617-1627. [DOI:10.1002/biot.201600504]
8. Ahrer K, Jungbauer A. Chromatographic and electrophoretic characterization of protein variants. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2006; 841(1-2): 110-122. [DOI:10.1016/j.jchromb.2006.05.044]
9. Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. MAbs 2015; 7(3): 483-493. [DOI:10.1080/19420862.2015.1016696]
10. Hintersteiner B, Lingg N, Zhang P, Woen S, Hoi KM, Stranner S, Wiederkum S, Mutschlechner O, Schuster M, Loibner H, Jungbauer A. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs 2016; 8(8): 1548-1560. [DOI:10.1080/19420862.2016.1225642]
11. Singh SK, Narula G, Rathore AS. Should charge variants of monoclonal antibody therapeutics be considered critical quality attributes? Electrophoresis 2016; 37(17-18): 2338-2346. [DOI:10.1002/elps.201600078]
12. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P. Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs 2010; 2(6): 613-624. [DOI:10.4161/mabs.2.6.13333]
13. Zhao YY, Wang N, Liu WH, Tao WJ, Liu LL, Shen ZD. Charge variants of an avastin biosimilar isolation, characterization, In vitro properties and pharmacokinetics in rat. PLoS one 2016; 11(3): e0151874. [DOI:10.1371/journal.pone.0151874]
14. Gangopadhyay A, Petrick AT, Thomas P. Modification of antibody isoelectric point affects biodistribution of 111-indium-labeled antibody. Nuclear medicine and biology 1996; 23(3): 257-261. [DOI:10.1016/0969-8051(95)02057-8]
15. Higel F, Seidl A, Sorgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. European journal of pharmaceutics and biopharmaceutics 2016; 100: 94-100. [DOI:10.1016/j.ejpb.2016.01.005]
16. Rodwell JD, Alvarez VL, Lee C, Lopes AD, Goers JW, King HD, Powsner HJ, McKearn TJ. Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proceedings of the national academy of sciences of the united states of America 1986; 83(8): 2632-2636. [DOI:10.1073/pnas.83.8.2632]
17. Griaud F, Denefeld B, Lang M, Hensinger H, Haberl P, Berg M. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs 2017; 9(5): 820-830. [DOI:10.1080/19420862.2017.1313367]
18. Mack S, Cruzado-Park, ID, Ratnayake CK, Application Information Bulletin A-12026 A: High Resolution cIEF of Therapeutic Monoclonal Antibodies: A Platform Method Covering pH 4-10, Beckman Coulter, Inc., Fullerton, CA, 2008. Available at: https://www. beckmancoulter.com/wsrportal/bibliography?docname=A-12026A.pdf.
19. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004; 25(9): 1327-1333. [DOI:10.1002/elps.200305844]
20. Coulter B. IgG Purity/Heterogeneity Assay Application Guide. Available at: https://www.beckmancoulter.com/ wsrportal/techdocs?docname=A51972AA.pdf.
21. Sciences GHL. Human Antibody Capture Kit Instruction 22-0648-88 AD.Available at: https://gels.yilimart.com/Assets/Images/doc/file/BR100839_INSTRUCTION_01.PDF
22. Sciences GHL. Amine Coupling Kit Instruction 22-0510-62 AG. Available at: https://be.vwr.com/assetsvc /asset/fr_BE/id/17891730/contents.
23. Turner A, Schiel JE. Qualification of NISTmAb charge heterogeneity control assays. Analytical and bioanalytical chemistry 2018; 410(8): 2079-2093. [DOI:10.1007/s00216-017-0816-6]
24. Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs 2012; 4(5): 578-585. [DOI:10.4161/mabs.21328]
25. Dakshinamurthy P, Mukunda P, Prasad Kodaganti B, Shenoy BR, Natarajan B, Maliwalave A, Halan V, Murugesan S, Maity S. Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals 2017; 46: 46-56. [DOI:10.1016/j.biologicals.2016.12.006]
26. Singh SK, Kumar D, Malani H, Rathore AS. LC-MS based case-by-case analysis of the impact of acidic and basic charge variants of bevacizumab on stability and biological activity. Scientific reports 2021; 11(1): 2487. [DOI:10.1038/s41598-020-79541-2]
27. Torkashvand F, Vaziri B. Charge Variants Analysis of Recombinant Monoclonal Antibodies. Biomedical journal of scientific and technical research 2019; 20(1): 14766-14767. [DOI:10.26717/BJSTR.2019.20.003395]
28. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS journal 2006; 8(3): E501-507. [DOI:10.1208/aapsj080359]
29. Miao S, Xie P, Zou M, Fan L, Liu X, Zhou Y, Zhao L, Ding D, Wang H, Tan WS. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Appl microbiol biotechnol 2017; 101(14): 5627-5638. [DOI:10.1007/s00253-017-8301-x]
30. Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. mAbs 2018; 10(4): 513-538. [DOI:10.1080/19420862.2018.1438797]
31. Tang L, Sundaram S, Zhang J, Carlson P, Matathia A, Parekh B, Zhou Q, Hsieh MC. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. MAbs 2013; 5(1): 114-125. [DOI:10.4161/mabs.22695]
32. Yan B, Steen S, Hambly D, Valliere-Douglass J, Vanden Bos T, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, Latypov RF, Wallace A, Lim A, Kleemann GR, Wang W, Balland A. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. Journal of pharmaceutical sciences 2009; 98(10): 3509-3521. [DOI:10.1002/jps.21655]
33. Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaïa N, Ionescu R, Beck A. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Analytical biochemistry 2009; 392(2): 145-154. [DOI:10.1016/j.ab.2009.05.043]
34. Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Analytical chemistry 2005; 77(5): 1432-1439. [DOI:10.1021/ac0494174]
35. Bults P, van der Voort A, Meijer C, Sonke GS, Bischoff R, van de Merbel NC. Analytical and pharmacological consequences of the in vivo deamidation of trastuzumab and pertuzumab. Analytical and bioanalytical chemistry 2022; 414(4): 1513-1524. [DOI:10.1007/s00216-021-03756-z]
36. Spanov B, Olaleye O, Lingg N, Bentlage AE, Govorukhina N, Hermans J, van de Merbel N, Vidarsson G, Jungbauer A, Bischoff R. Change of charge variant composition of trastuzumab upon stressing at physiological conditions. Journal of Chromatography A 2021; 1655: 462506. [DOI:10.1016/j.chroma.2021.462506]
37. Miranda-Hernandez MP, Lopez-Morales CA, Pina-Lara N, Perdomo-Abundez FC, Perez NO, Revilla-Beltri J, Molina-Perez A, Estrada-Marin L, Flores-Ortiz LF, Ruiz-Arguelles A, Medina-Rivero E. Pharmacokinetic Comparability of a Biosimilar Trastuzumab Anticipated from Its Physicochemical and Biological Characterization. BioMed research international 2015; 2015: 874916. [DOI:10.1155/2015/874916]
38. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjugate chemistry 2010; 21(12): 2153-2163. [DOI:10.1021/bc100261d]
39. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. Pharmacometrics and systems pharmacology 2017; 6(9): 576-588. [DOI:10.1002/psp4.12224]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb