Volume 26, Issue 3 (5-2022)                   IBJ 2022, 26(3): 230-239 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raeisi J, Oloomi M, Zolfaghari* M R, Siadat S D, Zargar M, Pourramezan Z. Bacterial DNA Detection in the Blood of Healthy Subjects. IBJ 2022; 26 (3) :230-239
URL: http://ibj.pasteur.ac.ir/article-1-3530-en.html
Abstract:  
Background: The presence of microbiome in the blood samples of healthy individuals has been addressed. However, no information can be found on the healthy human blood microbiome of Iranian subjects. The current study is thus aimed to investigate the existence of bacteria or bacterial DNA in healthy individuals.
Methods: Blood samples of healthy subjects were incubated in BHI broth at 37 °C for 72 h. The 16S rRNA PCR and sequencing were performed to analyze bacterial isolates. The 16S rRNA PCR was directly carried out on DNA samples extracted from the blood of healthy individuals. Next generation sequencing (NGS) was conducted on blood samples with culture-positive results.
Results: Fifty blood samples were tested, and six samples were positive by culture as confirmed by Gram staining and microscopy. The obtained 16S rRNA sequences of cultured bacterial isolates revealed the presence of Bacilli and Staphylococcus species by clustering in the GeneBank database (≥97% identity). The 16S rRNA gene sequencing results of one non-cultured blood specimen showed the presence of Burkholderia. NGS results illustrated the presence of Romboutsia, Lactobacillus, Streptococcus, Bacteroides, and Staphylococcus in the blood samples of positive cultures.
Conclusion: The dormant blood microbiome of healthy individuals may give the idea that the steady transfer of bacteria into the blood does not necessarily lead to sepsis. However, the origins and identities of blood-associated bacterial rDNA sequences need more evaluation in the healthy population.
 

References
1. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Frontiers in cellular and infection microbiology 2019; 9: 148. [DOI:10.3389/fcimb.2019.00148]
2. Tedeschi GG, Amici D, Paparelli M. Incorporation of nucleosides and amino-acids in human erythrocyte suspensions: possible relation with a diffuse infection of mycoplasms or bacteria in the l form. Nature 1969; 222(5200): 1285-1286. [DOI:10.1038/2221285a0]
3. McLaughlin RW, Vali H, Lau PCK, Palfree RGE, De Ciccio A, Sirois M, Ahmad D, Villemur R, Desrosiers M, Chan ECS. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? Journal of clinical microbiology 2002; 40(12): 4771-4775. [DOI:10.1128/JCM.40.12.4771-4775.2002]
4. Moriyama K, Ando C, Tashiro K, Kuhara S, Okamura S, Nakano S, Takagi Y, Miki T, Nakashima Y, Hirakawa H. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiology and immunology 2008; 52(7): 375-82. [DOI:10.1111/j.1348-0421.2008.00048.x]
5. Dinakaran V, Rathinavel A, Pushpanathan M, Sivakumar R, Gunasekaran P, Rajendhran J. Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. Plos one 2014; 9(8): e105221. [DOI:10.1371/journal.pone.0105221]
6. Damgaard C, Magnussen K, Enevold C, Nilsson M, Tolker-Nielsen T, Holmstrup P, Nielsen CH. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS one 2015; 10(3): e0120826. [DOI:10.1371/journal.pone.0120826]
7. Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 2016; 56(5): 1138-1147. [DOI:10.1111/trf.13477]
8. Gosiewski T, Ludwig-Galezowska A, Huminska K, Sroka-Oleksiak A, Radkowski P, Salamon D, Wojciechowicz J, Kus-Slowinska M, Bulanda M, Wolkow PP. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method-the observation of DNAemia. European journal of clinical microbiology and infectious diseases 2017; 36(2): 329-336. [DOI:10.1007/s10096-016-2805-7]
9. Traykova D, Schneider B, Chojkier M, Buck M. Blood microbiome quantity and the hyperdynamic circulation in decompensated cirrhotic patients. Plos one 2017; 12(2): e0169310. [DOI:10.1371/journal.pone.0169310]
10. Panaiotov S, Filevski G, Equestre M, Nikolova E, Kalfin R. Cultural isolation and characteristics of the blood microbiome of healthy individuals. Advances in microbiology 2018; 8: 406-421. [DOI:10.4236/aim.2018.85027]
11. Whittle E, Leonard MO, Harrison R, Gant TW, Tonge DP. Multi-method characterization of the human circulating microbiome. Frontiers in microbiology 2019; 9: 3266. [DOI:10.3389/fmicb.2018.03266]
12. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS microbiology reviews 2015; 39(4): 567-591. [DOI:10.1093/femsre/fuv013]
13. Cid J, Lozano M. Improving the bacteriological safety of platelet transfusions. Transfusion medicine reviews 2004; 18(3): 235-236. [DOI:10.1016/j.tmrv.2004.04.002]
14. Brecher ME, Hay SN. Bacterial contamination of blood components. Clinical microbiology reviews 2005; 18(1):195-204. [DOI:10.1128/CMR.18.1.195-204.2005]
15. Lafeuillade B, Eb F, Ounnoughene N, Petermann R, Daurat G, Huyghe G, Vo Mai MP, Caldani C, Rebibo D, Weinbreck P. Residual risk and retrospective analysis of transfusion‐transmitted bacterial infection reported by the F rench N ational H emovigilance N etwork from 2000 to 2008. Transfusion 2015; 55(3): 636-646. [DOI:10.1111/trf.12883]
16. Hjelmsø MH, Hansen LH, Bælum J, Feld L, Holben WE, Jacobsen CS. High-resolution melt analysis for rapid comparison of bacterial community compositions. Applied and environmental microbiology 2014; 80(12): 3568-3575. [DOI:10.1128/AEM.03923-13]
17. D'Aquila P, Giacconi R, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Passarino G, Provinciali M, Bellizzi D. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Frontiers in microbiology 2021; 12: 707515. [DOI:10.3389/fmicb.2021.707515]
18. Panaiotov S, Hodzhev Y, Tsafarova B, Tolchkov V, Kalfin R. Culturable and non-culturable blood microbiota of healthy Individuals. Microorganisms 2021; 9(7): 1464. [DOI:10.3390/microorganisms9071464]
19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and environmental microbiology 2008; 74(8): 2461-2470. [DOI:10.1128/AEM.02272-07]
20. Palkova L, Tomova A, Repiska G, Babinska K, Bokor B, Mikula I, Minarik G, Ostatnikova D, Soltys K. Evaluation of 16S rRNA primer sets for characterisation of microbiota in paediatric patients with autism spectrum disorder. Scientific reports 2021; 11(1): 6781. [DOI:10.1038/s41598-021-86378-w]
21. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences of the United States of America 2011; 108 Suppl 1: 4516-4522. [DOI:10.1073/pnas.1000080107]
22. Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011; 27(21): 2957-2963. [DOI:10.1093/bioinformatics/btr507]
23. Haas Brian J, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome research 2011; 21(3): 494-504. [DOI:10.1101/gr.112730.110]
24. Edgar Robert C, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27(16): 2194-2200. [DOI:10.1093/bioinformatics/btr381]
25. Kroumova V, Gobbato E, Basso E, Mucedola L, Giani T, Fortina G. Direct identification of bacteria in blood culture by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry: a new methodological approach. Rapid communications in mass spectrometry 2011; 25(15): 2247-2249. [DOI:10.1002/rcm.5113]
26. Torres I, Gimenez E, Pascual T, Bueno F, Huntley D, Martínez M, Navarro D. Short-term incubation of positive blood cultures in brain-heart infusion broth accelerates identification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry. Journal of medical microbiology 2017; 66(12): 1752-1758. [DOI:10.1099/jmm.0.000643]
27. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC biology 2014; 12: 87. [DOI:10.1186/s12915-014-0087-z]
28. Domingue GJ, Woody HB. Bacterial Persistence and Expression of Disease. Clinical microbiology reviews 1997; 10(2): 320-334. [DOI:10.1128/CMR.10.2.320]
29. Laurence M, Hatzis C, Brash DE. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS one 2014; 9(5): e97876. [DOI:10.1371/journal.pone.0097876]
30. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, Narbad A, Olivares M, Xaus J, Rodríguez JM. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Current microbiology 2005; 51(4): 270-274. [DOI:10.1007/s00284-005-0020-3]
31. Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects contain bacterial ribosomal DNA? Journal of clinical microbiology 2001; 39(5): 1956-1959. [DOI:10.1128/JCM.39.5.1956-1959.2001]
32. Arnolds KL, Martin CG, Lozupone CA. Blood type and the microbiome- untangling a complex relationship with lessons from pathogens. Current opinion in microbiology 2020; 56: 59-66. [DOI:10.1016/j.mib.2020.06.008]
33. Schierwagen R, Alvarez-Silva C, Madsen MSA, Kolbe CC, Meyer C, Thomas D, Uschner FE, Magdaleno F, Jansen Ch, Pohlmann A, Praktiknjo M, Hischebeth GT, Molitor E, Latz E, Lelouvier B, Trebicka J, Arumugam M. Circulating microbiome in blood of different circulatory compartments. Gut 2019; 68(3): 578-580. [DOI:10.1136/gutjnl-2018-316227]
34. Schierwagen R, Alvarez-Silva C, Servant F, Trebicka J, Lelouvier B, Arumugam M. Trust is good, control is better: technical considerations in blood microbiome analysis. Gut 2020; 69(7): 1362-1363. [DOI:10.1136/gutjnl-2019-319123]
35. Nguyen N-P, Warnow T, Pop M, White B. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ biofilms and microbiomes 2016; 2: 1-8. [DOI:10.1038/npjbiofilms.2016.4]
36. Cogen A, Nizet V, Gallo R. Skin microbiota: a source of disease or defence? British journal of dermatology 2008; 158(3): 442-455. [DOI:10.1111/j.1365-2133.2008.08437.x]
37. Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. Journal of clinical periodontology 2006; 33(6): 401-407. [DOI:10.1111/j.1600-051X.2006.00924.x]
38. Bahrani-Mougeot FK, Paster BJ, Coleman S, Ashar J, Barbuto S, Lockhart PB. Diverse and novel oral bacterial species in blood following dental procedures. Journal of clinical microbiology 2008; 46(6): 2129-2132. [DOI:10.1128/JCM.02004-07]
39. Iwai T. Periodontal bacteremia and various vascular diseases. Journal of periodontal research 2009; 44(6): 689-694. [DOI:10.1111/j.1600-0765.2008.01165.x]
40. Yamaguchi M, Terao Y, Mori-Yamaguchi Y, Domon H, Sakaue Y, Yagi T, Nishino K, Yamaguchi A, Nizet V, Kawabata S. Streptococcus pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. PLoS one 2013; 8(10): e77282. [DOI:10.1371/journal.pone.0077282]
41. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science 2009; 326(5960): 1694-1697. [DOI:10.1126/science.1177486]
42. Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nature reviews microbiology 2011; 9(3): 215-222. [DOI:10.1038/nrmicro2508]
43. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009; 324(5931): 1190-1192. [DOI:10.1126/science.1171700]
44. Epstein SS. The phenomenon of microbial uncultivability. Current opinion in microbiology 2013; 16(5): 636-642. [DOI:10.1016/j.mib.2013.08.003]
45. Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K, Tamaki H, Tanaka M, Nakatsu CH, Kamagata Y. A Hidden Pitfall in the Preparation of Agar Media Undermines Microorganism Cultivability. Applied and environmental microbiology 2014;80:7659-7666. [DOI:10.1128/AEM.02741-14]
46. Kirn TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and interpret. Clinical microbiology and infection 2013; 19(6): 513-520. [DOI:10.1111/1469-0691.12180]
47. Olde Loohuis LM, Mangul S, Ori APS, Jospin G, Koslicki D, Yang HT, Wu T, Boks MP, Lomen-Hoerth C, Wiedau-Pazos M, Cantor RM, M de Vos W, Kahn RS, Eskin E, Ophoff RA. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Translational psychiatry 2018; 8(1): 96. [DOI:10.1038/s41398-018-0107-9]
48. Li Q, Wang C, Tang C, Zhao X, He Q, Li J. Identification and Characterization of Blood and Neutrophil-Associated Microbiomes in Patients with Severe Acute Pancreatitis Using Next-Generation Sequencing. Frontiers in cellular and infection microbiology2018; 8: 5. [DOI:10.3389/fcimb.2018.00005]
49. Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T, Tamura Y, Sakurai Y, Yamamoto R, Mita T, Fujitani Y, Fukuda H, Nomoto K, Takahashi T, Asahara T, Hirose T, Nagata S, Yamashiro Y, Watada H. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes care 2014; 37(8): 2343-2350. [DOI:10.2337/dc13-2817]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb