1. Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes and development 2009; 23(10): 1151-1164. [
DOI:10.1101/gad.1793309]
2. Cullen BR. Viral and cellular messenger RNA targets of viral microRNAs. Nature 2009; 457(7228): 421-425. [
DOI:10.1038/nature07757]
3. McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus research 2006; 117(1): 90-104 [
DOI:10.1016/j.virusres.2006.01.002]
4. Bloom DC. HSV LAT and neuronal survival. International reviews of immunology 2004; 23(1-2): 187-198. [
DOI:10.1080/08830180490265592]
5. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454(7205): 780-783. [
DOI:10.1038/nature07103]
6. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. Journal of virology 2009; 83(20): 10677-10683. [
DOI:10.1128/JVI.01185-09]
7. Jurak I, Kramer MF, Mellor JC, Van Lint AL, Roth FP, Knipe DM, Coen DM. Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. Journal of virology 2010; 84(9): 4659-4672. [
DOI:10.1128/JVI.02725-09]
8. Munson DJ, Burch AD. A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture. Archives of virology 2012; 157(9): 1677-1688. [
DOI:10.1007/s00705-012-1345-4]
9. Wu W, Guo Z, Zhang X, Guo L, Liu L, Liao Y, Wang J, Wang L, Li Q. A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. Science China life sciences 2013; 56(4): 373-383. [
DOI:10.1007/s11427-013-4458-4]
10. Han Z, Liu X, Chen X, Zhou X, Du T, Roizman B, Zhou G. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proceedings of the national academy of sciences 2016; 113(7): E894-E901. [
DOI:10.1073/pnas.1525674113]
11. Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC. Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. Journal of virology 2013; 87(12): 6589-6603. [
DOI:10.1128/JVI.00504-13]
12. Everett RD. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 2000; 22(8): 761-770.
https://doi.org/10.1002/1521-1878(200008)22:8<761::AID-BIES10>3.0.CO;2-A [
DOI:10.1002/1521-1878(200008)22:83.0.CO;2-A]
13. Preston C. Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. Journal of virology 1979; 29(1): 275-284. [
DOI:10.1128/JVI.29.1.275-284.1979]
14. Li Y, Zhang C, Chen X, Yu J, Wang Y, Yang Y, Du M, Jin H, Ma Y, He B, Cao Y. ICP34. 5 protein of herpes simplex virus facilitates the initiation of protein translation by bridging eukaryotic initiation factor 2α (eIF2α) and protein phosphatase 1. Journal of biological chemistry 2011; 286(28): 24785-24792. [
DOI:10.1074/jbc.M111.232439]
15. Gupta A, Gartner J, Sethupathy P, Hatzigeorgiou A, Fraser N. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2006; 442(7098): 82-85. [
DOI:10.1038/nature04836]
16. Nie Y, Cui D, Pan Z, Deng J, Huang Q, Wu K. HSV-1 infection suppresses TGF-β1 and SMAD3 expression in human corneal epithelial cells. Molecular vision 2008; 14: 1631-1638.
17. Hu M, Dutt J, Arrunategui-Correa V, Baltatzis S, Foster CS. Cytokine mRNA in BALB/c mouse corneas infected with herpes simplex virus. Eye (Lond) 1999; 13(Pt 3a): 309-313. [
DOI:10.1038/eye.1999.80]
18. Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomedicine and Pharmacotherapy 2018; 101: 670-681. [
DOI:10.1016/j.biopha.2018.02.090]
19. Eser PO, Jänne PA. TGFβ pathway inhibition in the treatment of non-small cell lung cancer,. Pharmacology and therapeutics 2018; 184: 112-130. [
DOI:10.1016/j.pharmthera.2017.11.004]
20. Katz LH, Likhter M, Jogunoori W, Belkin M, Ohshiro K, Mishra L. TGF-β signaling in liver and gastrointestinal cancers. Cancer letters 2016; 379(2): 166-172. [
DOI:10.1016/j.canlet.2016.03.033]
21. Xu L, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, Mukherjee P, Friedman S, Eng FJ. Human hepatic stellate cell lines, LX-1 and LX-2: new tools
22. for analysis of hepatic fibrosis. Gut 2005; 54(1): 142-151. [
DOI:10.1136/gut.2004.042127]
23. Zhong YQ, Wei J, Fu YR, Shao J, Liang YW, Lin YH, Liu J, Zhu ZH. Toxicity of cationic liposome lipofectamine 2000 in human pancreatic cancer Capan-2 cells. Nan fang yi ke da xue xue bao 2008; 28(11): 1981-1984.
24. Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 1998; 94(5): 585-594. [
DOI:10.1016/S0092-8674(00)81600-1]
25. Lee DK, Kim BC, Kim IY, ah Cho E, Satterwhite DJ, Kim SJ. The human papilloma virus E7 oncoprotein inhibits transforming growth factor-β signaling by blocking binding of the Smad complex to its target sequence. Journal of Biological Chemistry 2002; 277(41): 38557-38564. [
DOI:10.1074/jbc.M206786200]
26. Seo T, Park J, Choe J. Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 1 inhibits transforming growth factor-β signaling. Cancer research 2005; 65(5): 1738-1747. [
DOI:10.1158/0008-5472.CAN-04-2374]
27. Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J, Zermati Y, Mauviel A, Bazarbachi A, Hermine O. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-β1 signaling in human T cells via c-Jun activation: a potential mechanism of
28. HTLV-I leukemogenesis. Blood 2002; 100(12): 4129-4138. [
DOI:10.1182/blood-2001-12-0372]
29. Nicole Pavio, Battaglia S, Boucreux D, Arnulf B, Sobesky R, Hermine O, Brechot C. Hepatitis C virus core variants isolated from liver tumor but not from adjacent non-tumor tissue interact with Smad3 and inhibit the TGF-β pathway. Oncogene 2005; 24: 6119-6132. [
DOI:10.1038/sj.onc.1208749]
30. Gottwein E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell host and microbe 2008; 3(6): 375-387. [
DOI:10.1016/j.chom.2008.05.002]
31. Györfi AH, Matei AE, Distler JH. Targeting TGF-β signaling for the treatment of fibrosis. Matrix biology 2018; 68-69: 8-27. [
DOI:10.1016/j.matbio.2017.12.016]
32. Nakatsukasa H, Nagy P, Evarts RP, Hsia CC, Marsden E, Thorgeirsson SS. Cellular distribution of transforming growth factor-beta 1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis. Journal of clinical investigation 1990; 85(6): 1833-1843. [
DOI:10.1172/JCI114643]
33. Garber DA, Schaffer PA, Knipe DM. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. Journal of virology 1997; 71(8): 5885-5893. [
DOI:10.1128/JVI.71.8.5885-5893.1997]
34. Perng GC, Jones J, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechster SL. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000; 287(5457): 1500-1503. [
DOI:10.1126/science.287.5457.1500]
35. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM. Prediction and identification of herpes simplex virus 1-encoded microRNAs. Journal of virology 2006; 80(11): 5499-5508. [
DOI:10.1128/JVI.00200-06]
36. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF‐β signaling pathway in hepatic fibrosis. Liver International 2006; 26(1): 8-22. [
DOI:10.1111/j.1478-3231.2005.01192.x]