Volume 22, Issue 4 (7-2018)                   IBJ 2018, 22(4): 237-245 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Ghahhari N, Maghsood F, Jahandideh S, Lotfinia M, Lak S, Johari B, et al . Secretome of Aggregated Embryonic Stem Cell-Derived Mesenchymal Stem Cell Modulates the Release of Inflammatory Factors in Lipopolysaccharide-Induced Peripheral Blood Mononuclear Cells. IBJ 2018; 22 (4) :237-245
URL: http://ibj.pasteur.ac.ir/article-1-2255-en.html
Background: Bone marrow mesenchymal stem cells (BM-MSCs) have emerged as a potential therapy for various inflammatory diseases. Because of some limitations, several recent studies have suggested the use of embryonic stem cell-derived MSCs (ESC-MSCs) as an alternative for BM-MSCs. Some of the therapeutic effects of the ESC-MSCs are related to the secretion of a broad array of cytokines and growth factors, known as secretome. Harnessing this secretome for therapeutic applications requires the optimization of production of secretary molecules. It has been shown that aggregation of MSCs into 3D spheroids, as a preconditioning strategy, can enhance immunomodulatory potential of such cells. In this study, we investigated the effect of secretome derived from human ESC-MSCs (hESC-MSCs) spheroids on secretion of IL-1β, IL-10, and tumor necrosis factor α (TNF-α) from lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMCs). Methods: In the present study, after immunophenotyping and considering mesodermal differentiation of hESC-MSCs, the cells were non-adherently grown to prepare 3D aggregates, and then conditioned medium or secretome was extracted from the cultures. Afterwards, the anti-inflammatory effects of the secretome were assessed in an in vitro model of inflammation. Results: Results from this study showed that aggregate-prepared secretome from hESC-MSCs was able to significantly decrease the secretion of TNF-α (301.7 ± 5.906,  p < 0.0001) and IL-1β (485.2 ± 48.38, p < 0.001) from LPS-induced PBMCs as the indicators of inflammation, in comparison with adherent culture-prepared secretome (TNF-α: 166.6 ± 8.04, IL-1β: 125.2 ± 2.73). Conclusion: Our study indicated that cell aggregation can be an appropriate strategy to increase immunomodulatory characteristics of hESC-MSCs.

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb