TY - JOUR JF - انستیتو-پاستور-ایران JO - IBJ VL - 26 IS - 4 PY - 2022 Y1 - 2022/7/01 TI - Packaging, Purification, and Titration of Replication-Deficient Semliki Forest Virus-Derived Particles as a Self-Amplifying mRNA Vaccine Vector TT - N2 - Background: Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for Semliki Forest virus (SFV)-PD self-amplifying mRNA (SAM) preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of virus replicon particle (VRP)-packaged SAM for vaccine studies. Methods: pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into human embryonic kidney 293 cells (HEK-293) and baby hamster kidney cell line 21 (BHK-21) cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by reverse transcription quantitative real-time PCR (RT-qPCR). Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion: Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs. SP - 269 EP - 278 AU - Savar, Nastaran Sadat AU - Vallet, Thomas AU - Arashkia, Arash AU - Lundstrom, Kenneth AU - Vignuzzi*, Marco AU - Mahmoudzadeh Niknam, Hamid AD - Immunology Department, Pasteur Institute of Iran, Tehran, Iran KW - mRNA vaccines KW - Semliki Forest virus KW - Vaccines UR - http://ibj.pasteur.ac.ir/article-1-3535-en.html DO - 10.52547/ibj.3535 ER -