Search published articles


Showing 2 results for Sall4

Zahra Sheikhrezaei, Parisa Heydari, Alireza Farsinezhad, Ahmad Fatemi, Soudeh Khanamani Falahati-Pour, Shokoofeh Darakhshan, Mojgan Noroozi Karimabad, Ali Darekordi, Hossein Khorramdelazad, Gholamhossein Hassanshahi,
Volume 22, Issue 2 (3-2018)
Abstract

Background: Acute myeloblastic leukemia (AML) is a clonal disorder due to bone marrow failure and uncontrolled proliferation of myeloid lineage. Acute promyelocytic leukemia (APL) is a subtype of AML. Heterocyclic compounds, such as indole, are considered as attractive candidates for cancer therapy, due to their abundance in nature and known biological activity. Sal-like protein (SALL4) is a zinc finger transcription factor involving in the multi-potency of stem cells, in the NB4 cell line. This study was aimed to evaluate the effects of basal indole and its new derivative, 2-(1-((2, 4-Aril)imino)-2,2,2-trifluoroethyl) phenyl-1H Indole-3- carbaldehyde (TFPHC), on the expression of SALL4. Methods: Cells were cultured and treated with different concentrations (75, 150, and 300 µg/mL) of the new indole derivative and DMSO, as a vehicle control, for 24 and 48 hours. Cell proliferation was evaluated by using Trypan blue exclusion and MTT assays. The percentage of apoptotic cells was determined by flowcytometry analysis using the Annexin V/PI apoptosis detection kit; mRNA expression of SALL4 was studied using absolute quantitative RT-PCR. Results: Our findings demonstrated the effects of new indole derivatives on SALL4 mRNA expression. Expression of SALL4 mRNA was significantly decreased at 75, 150, and 300 µg/mL concentrations. Conclusion: SALL4 plays a role in the survival of APL cells. SALL4 expression could be suppressed by the novel indole derivative. Additionally, SALL4 gene suppression can serve as a target in APL therapy.
Reihaneh Alsadat Mahmoudian, Maryam Lotfi Gharaie, Roya Abbaszadegan, Mohammad Mahdi Forghanifard, Mohammad Reza Abbaszadegan,
Volume 25, Issue 3 (5-2021)
Abstract

Background: Large intergenic non-coding RNA regulator of reprogramming (LINC-ROR), as a cancer-related Long non-coding RNA, has vital roles in stem cell survival, pluripotency, differentiation, and self-renewal in human embryonic stem cell. However, cancer-related molecular mech­anisms, its functional roles, and clinical value of LINC-ROR in gastric cancer (GC) remain unclear. In this study, we aimed to investigate probable interplay between LINC-ROR with SALL4 stemness regulator and their role with the development of the disease. Methods: The mRNA expression profile of LINC-ROR and SALL4 was assessed in tumoral and adjacent non-cancerous tissues of GC patients, using quantitative real-time PCR. Results: Significant LINC-ROR underexpression and SALL4 overexpression were observed in 55.81% and 75.58% (p < 0.0001) of samples, respectively. The expression of LINC-ROR and SALL4 were significantly correlated with each other (p = 0.044). There was an association between the underexpression of LINC-ROR and sex, stage of tumor progression, tumor type, and location of tumor (p < 0.05), and Helicobacter pylori infection with SALL4 expression (p = 0.036). There were also significant correlations between concomitant mRNA expression of SALL4 and LINC-ROR in tumors located at distal noncardiac, positive for H. pylori infection, tumors with invasion into the muscle layer of the stomach, and grade II tumor (p < 0.05). Conclusion: The clinical results of the SALL4-LINC-ROR association propose a probable functional interaction between these markers in tumor maintenance and aggressiveness. Our study can help to understand one of the mechanisms involved in the progression of gastric cancer through the function of these regulators.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb