Search published articles


Showing 3 results for Rna Interference

Fariba Esmaeili,
Volume 13, Issue 1 (1-2009)
Abstract

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can also function as a primer converting mRNA into dsRNA that are further cleaved to produce more siRNA. This activity involves the enzyme RNA-dependent RNA polymerase (RdRP). There are no known RdRP involved in RNAi in mammals. By using an RdRP from Caenorhabditis elegance named ego-1, investigators intend to enhance RNAi effect in mammalian cells. The aims of this project were: 1) to investigate the efficiency of siRNA to enhanced green fluorescent protein (eGFP) gene silencing and 2) to enhance the RNAi effect. Methods: We used a vector-based siRNA to target eGFP. Also we used a vector expressing ego-1 to test for a possible amplification effect of RNAi. The expression of eGFP in the cells was detected by using fluorescent microscopy, flowcytometry and Western-blotting. Results: Transfection of the plasmid into P19 cells significantly decreased eGFP fluorescence. In addition, eGFP protein was reduced. Preliminary data suggested that the presence of ego-1 enhanced the RNAi effect. Conclusion: The results indicated that use of hairpin siRNA expression vectors for RNAi is a promising method to inhibition of gene expression in mammalian cells. Also, introducing RdRP enzyme to mammalian cells might amplify the RNAi effect in the cells.
Saeid Malekzadeh, Soroush Sardari, Parisa Azerang, Dorsa Khorasanizadeh, Solmaz Agha Amiri, Mohammad Azizi, Nazanin Mohajerani, Vahid Khalaj,
Volume 21, Issue 2 (3-2017)
Abstract

Bakground: Aspergillus fumigatus is an airborne opportunistic fungal pathogen that can cause fatal infections in immunocompromised patients. Although the current anti-fungal therapies are relatively efficient, some issues such as drug toxicity, drug interactions, and the emergence of drug-resistant fungi have promoted the intense research toward finding the novel drug targets. Methods: In search of new antifungal drug targets, we have used a bioinformatics approach to identify novel drug targets. We compared the whole proteome of this organism with yeast Saccharomyces cerevisiae to come up with 153 specific proteins. Further screening of these proteins revealed 50 potential molecular targets in A. fumigatus. Amongst them, RNA-binding protein (RBP) was selected for further examination. The aspergillus fumigatus RBP (AfuRBP), as a peptidylprolyl isomerase, was evaluated by homology modeling and bioinformatics tools. RBP-deficient mutant strains of A. fumigatus were generated and characterized. Furthermore, the susceptibility of these strains to known peptidylprolyl isomerase inhibitors was assessed. Results: AfuRBP-deficient mutants demonstrated a normal growth phenotype. MIC assay results using inhibitors of peptidylprolyl isomerase confirmed a higher sensitivity of these mutants compared to the wild type. Conclusion: Our bioinformatics approach revealed a number of fungal-specific proteins that may be considered as new targets for drug discovery purposes. Peptidylprolyl isomerase, as a possible drug target, was evaluated against two potential inhibitors and the promising results were investigated mechanistically. Future studies would confirm the impact of such target on the antifungal discovery investigations.


Razieh Taghizadeh Pirposhteh, Ehsan Arefian, Arash Arashkia, Dr Nasir Mohajel,
Volume 27, Issue 6 (11-2023)
Abstract

Background: The E6 oncoprotein of HPV plays a crucial role in promoting cell proliferation and inhibiting apoptosis, leading to tumor growth. Non-viral vectors such as nona-arginine (R9) peptides have shown to be potential as carriers for therapeutic molecules. This study aimed to investigate the efficacy of nona-arginine in delivering E6 shRNA and suppressing the E6 gene of HeLa cells in vitro.
Methods: HeLa cells carrying E6 gene were treated with a complex of nona-arginine and E6 shRNA. The complex was evaluated using gel retardation assay and FESEM microscopy. The optimal N/P ratio for R9 peptide to transfect HeLa cells with luciferase gene was determined.  Relative real-time PCR was used to evaluate the efficiency of mRNA suppression efficiency for E6 shRNA, while the effect of E6 shRNA on cell viability was measured using an MTT assay.
Results: The results indicated that R9 efficiently binds to shRNA and effectively transfects E6 shRNA complexes at N/P ratios greater than 30. Transfection with R9 and polyethylenimine complexes resulted in a significant toxicity compared to the scrambled plasmid, indicating selective toxicity for HeLa cells. Real-time PCR confirmed the reduction of E6 mRNA expression levels in the cells transfected with anti-E6 shRNA.
Conclusion: The study suggests that R9 is a promising non-viral gene carrier for transfecting E6 shRNA in vitro, with significant transfection efficiency and minimal toxicity.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb