Search published articles


Showing 2 results for Tahghighi

Houshang Afrouzan, Azar Tahghighi, Sedigheh Zakeri, Ali Es-Haghi,
Volume 22, Issue 1 (1-2018)
Abstract

Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to
synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs.


Elmira Karimzadeh Barenji, Shokufeh Beglari, Azar Tahghighi, Parisa Azerang, Mahdi Rohani*,
Volume 28, Issue 2 (3-2024)
Abstract

Background: Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity.
Methods: Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms.
Results: The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae.
Conclusion: This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.

 


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb