Short Report

Three Novel Mutations in Iranian Patients with Tay-Sachs Disease

Solmaz Jamali1, Nasim Eskandari2, Omid Aryani2, Shadab Salehpour3, Talieh Zaman4, Behnam Kamalidehghan5 and Massoud Houshmand*2,6

1Dept. of Genetics, Islamic Azad University, Ahar, Iran; 2Dept. of Genetics, Special Medical Center, Tehran, Iran; 3Dept. of Pediatrics, Mofid Children's Hospital, Shaheed Beheshti University of Medical Sciences, Tehran, Iran; 4Dept. of Pediatric Metabolic Disorders, Tehran University of Medical Sciences, Tehran, Iran; 5Dept. of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; 6National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

Received 10 December 2012; revised 6 August 2013; accepted 11 August 2013

ABSTRACT

Background: Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population.

Methods: In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion.

Results: Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation.

Conclusion: In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations.

Keywords: Tay-Sachs disease, β-hexosaminidase A, β-hexosaminidase B

INTRODUCTION

D eficiency of the lysosomal enzyme, β-hexosaminidase (HEX), leads to a heterogeneous group of recessive disorders. HEXA and HEXB are two isoenzymes of HEX. Tay-Sachs disease (MIM ID # 272800) is an autosomal recessive disorder, which results from a deficiency of HEXA activity [1, 2]. However, deficiencies of both HEXA and HEXB activities result in Sandhoff disease. β-N-acetyl HEXA is a heterodimer protein, which includes one α subunit and one β subunit, which are encoded by the HEXA (MIM 606869) and HEXB genes, respectively [3]. TSD is caused by mutations in the HEXA gene, thus leads to intralysosomal storage of its natural substrate (ganglioside GM2) [3, 4], primarily in neurocytes. TSD is a heterogeneous disease, in which the prototype of Tay-Sachs (infantile form) results from a complete absence of enzyme activity. This form manifests until the age of 3-5 months with the onset of hypotonia, decreasing attentiveness, developmental arrest by 83%, low muscle tone, blindness, macular cherry-red spots (typical ophthalmology feature) due to lipid-laden ganglion cells, intractable seizures, and rapid neurological deterioration, which leads to death in early childhood by the age of 5 [1, 5, 6]. Juvenile and adult subtypes of Tay-Sachs are less severe and extremely variable with slow progression due to the presence of some residual enzyme activities [5] and characterized by ataxia, dementia, cerebella dysfunction, dystopia, atypical motor neuron disease, and the psychiatric symptoms of depression and anxiety [5, 7]. Tay-Sachs disorder occurs at high frequency in Ashkenazi Jewish individuals due to a shared genetic background, with an incidence of 1 in 2,500 to 3,900 live births compared to 1 in 320,000 in the general population [8, 9]. Additionally, over 130 mutations in the HEXA gene have been already reported to cause TSD [9]. Study of Tay-Sachs in Ashkenazi patients showed that there are three mutations in this ethnic

* Corresponding Author; Tel: (+98-21) 4458 0390; Fax: (+98-21) 4458 0399; E-mail: massoudh@nigeb.ac.ir
group: a 4-bp insertion in exon 11 of the \textit{HEXA} gene (c.1274_1277dupTATC, 81%), a splicing mutation (c.1421+1G4C IVS12+1G4C, 15%), and a later-onset mutation (c.805G4A, 2%) \cite{10}. This limited number of founder mutations has led to the design of a prevention program (carrier screening), which has successfully reduced the occurrence of TSD in the Ashkenazi population \cite{10, 11}. In addition to Ashkenazi Jews, TSD has been described in non-Ashkenazi populations. In the Middle East, TSD has been reported in Arab, Iraqi, Turkish populations \cite{12}. Studies of \textit{HEXA} mutations in Saudi Arabian populations showed two nonsense mutations, including one novel mutation in exon 14 (c.1528C>T [p.R510X]) and one known mutation (c.78G>A [p.W26X]) \cite{8} as well as one known missense mutation (1510G>A [p.R504H]) \cite{13-16}. In the Iraqi Jewish population, a transition c.1351 C>G was found \cite{17} in exon 12, which resulted in the change of Leucine to Valine (Val) at position 451. However, one missense mutation c.1A>G (p.MIV) and one nonsense mutation c.1177C>T (p.R393X) were found in infantile Tay-Sachs disease in the Persian population \cite{18}. In this study, we examined the TSD patients in order to identify the novel TSD-causing mutations in the \textit{HEXA} and \textit{HEXB} genes in an Iranian population.

\section*{MATERIALS AND METHODS}

\textbf{Human subjects.} Thirty one patients who had received clinical and biochemical diagnoses (deficiency of \textit{HEXA} activity) of TSD, were referred to the Medical Genetics Lab in Tehran, Iran for molecular analysis. All patients were informed of the aims of the study and gave their informed consent to the genetics analysis.

\textbf{Molecular analysis of \textit{HEXA}.} The genomic DNA (DNA fast, QIAGEN, Cat. No. 51204) was isolated from 31 TSD patients using peripheral blood leukocytes and chorionic villus sampling according to the manufacturer's protocol. The exons, exon-intron boundaries and at least 20 bp of flanking intronic sequences of the \textit{HEXA} gene (\(\alpha\) and \(\beta\) subunits) were PCR amplified in 14 fragments using primer pairs (Table 1).

\textbf{RESULTS}

Mutation analysis of the \textit{HEXA} gene was performed on genomic DNA from the submitted specimen using sequence analysis of coding exons and corresponding intron/exon boundaries. The results revealed heterozygous mutations in patient 1 (c.986+3A>G) and patients 6 and 10 (c.170G>A in exon 5), heterozygote mutation in patients 7 and 8 (IVS2+1 G>A), patient 11 (c.393, R>X), patients 13 and 14 (deletion [Del] TTAGGCAAGG in exon 10), and patient 21 (c.368, Lys>stop) as well as non-pathogenic mutations in patients 4 (A->G in exon 13 [coding-region] and G->A in exon 14 [non-coding-region]) in \textit{HEXA} gene (Table 2).

\begin{table}[h]
\centering
\caption{DNA primers for identification of mutations in Tay-Sachs disease}
\begin{tabular}{|c|c|c|}
\hline
Exon & Forward & Reverse & Product size (bp) & TM (°C) \\
\hline
E1 & CGTGATTCGCCGATAAGTCA & TCCGACTCACCTGTGAGGTA & 352 & 59.6 \\
E2 & TGTGAGCTGAGGGCTAGAGC & CCAGGCCATCCAGAGTTACA & 250 & 60.0 \\
E3 & CATGAGGTAGGTGGTGCTTTG & TGTGAGCTGAGGGCTAGAGC & 207 & 57.0 \\
E4 & GCTACATGGAACCTCCTCACA & TGTGAGCTGAGGGCTAGAGC & 229 & 60.0 \\
E5 & TAAGAATCCTGGGAGAGTTG & GGTTACCAGAGTGTCCAGGA & 453 & 62.0 \\
E6 & TGAGAGCTGAGGCAGGTGAA & AACTGGCTGGTTAGGATGAG & 223 & 59.6 \\
E7 & GCATCTTCTACTCTGCTAGC & AAGCTTCACTCTGAGCATAA & 260 & 55.6 \\
E8 & GACACTCATATGGGGTTRTTTC & GCTCTCTACTCTGCTAGC & 252 & 55.6 \\
E9 & CAGGCTTAGGTGGTCTGAGGA & GGCGCTGACTCGGTATGGAAA & 240 & 58.7 \\
E10 & CAGTCTAGAACCCATCAGAG & AACTGGCTGGTTAGGATGAG & 223 & 59.6 \\
E11 & ACTGCCATTTGACCTTTT & CAGCCATTTGACCTTTT & 270 & 61.2 \\
E12 & GAAACAACTTAGCTGGGTT & GAGGGGGGGGGGGGGG & 252 & 55.6 \\
E13 & TGTGGATGTCCAGCACCTTT & TGTGGATGTCCAGCACCTTT & 270 & 61.2 \\
E14 & TGACTGGGTGTGAAAGTGTTCG & TGTGGATGTCCAGCACCTTT & 172 & 59.6 \\
\hline
\end{tabular}
\end{table}
Table 2. Mutations detected in 31 cases for Tay-Sachs in an Iranian population.

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Disease Status</th>
<th>DNA Change/Mutation</th>
<th>Gene/Exonic location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>c.986+3A>G</td>
<td>HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>C331G</td>
<td>HEXB</td>
<td>Hom</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>Gln>Glu</td>
<td>Exon 10/HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>G>A(4326265)</td>
<td>HEXA/Exon 14</td>
<td>Hom</td>
</tr>
<tr>
<td>5</td>
<td>?</td>
<td>G70A, G76A and G45A</td>
<td>Exon 14/HEXA</td>
<td>Het/novel mutation</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>c.170 G>A</td>
<td>Exon 5/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>IVS2+1 G>A</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>IVS2+1 G>A</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>c.631-634/</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>c.170 G>A</td>
<td>Exon 5/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>c.1177, Arg393>X</td>
<td>Exon 11/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>12</td>
<td>?</td>
<td>DelG713</td>
<td>Exon 14/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>Del TTAGGCAAGGGGC</td>
<td>Exon 10/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>Del TTAGGCAAGGGGC</td>
<td>Exon 10/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>15</td>
<td>*</td>
<td>c.1 T>C</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>16</td>
<td>*</td>
<td>DelTCT</td>
<td>Exon 9/HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>17</td>
<td>?</td>
<td>T to C</td>
<td>Exon 14/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>18</td>
<td>*</td>
<td>c.1278 Insertion TATC</td>
<td>Exon 11/HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>19</td>
<td>*</td>
<td>c.1278 Insertion TATC</td>
<td>Exon 11/HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>20</td>
<td>*</td>
<td>c.368 Lys>stop</td>
<td>Exon 11/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>A>G</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>22</td>
<td>?</td>
<td>A.436 I>V</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>23</td>
<td>?</td>
<td>A.175 G</td>
<td>HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>24</td>
<td>?</td>
<td>InsG</td>
<td>HEX4 (β Subunit), Intron5</td>
<td>Hom</td>
</tr>
<tr>
<td>25</td>
<td>*</td>
<td>c.1177, R393>X</td>
<td>HEX4 (β Subunit), Intron5</td>
<td>Hom</td>
</tr>
<tr>
<td>26</td>
<td>?</td>
<td>G80A</td>
<td>HEX4 (β Subunit), Intron15</td>
<td>Hom</td>
</tr>
<tr>
<td>27</td>
<td>?</td>
<td>InsG</td>
<td>HEX4 (β Subunit), Intron5</td>
<td>Hom</td>
</tr>
<tr>
<td>28</td>
<td>?</td>
<td>c.436 A>G</td>
<td>Exon 11/HEXA</td>
<td>Het</td>
</tr>
<tr>
<td>29</td>
<td>affected</td>
<td>c.37 C>G</td>
<td>Exon 1/HEXA</td>
<td>Hom</td>
</tr>
<tr>
<td>30</td>
<td>?</td>
<td>Del A</td>
<td>Exon 3/HEXA</td>
<td>Het/Novel Mutation</td>
</tr>
<tr>
<td>31</td>
<td>?</td>
<td>Del A</td>
<td>Exon 3/HEXA</td>
<td>Het/Novel Mutation</td>
</tr>
</tbody>
</table>

Het: Heterozygote; Hom: Homozygote; (-): not affected; (?): Unclear; (*): affected
Dissection of Novel Mutations in Tay-Sachs Disease

The disease status for patients 2, 5, 12, 18, 22, 23, 24, 26, 27, 28, 30, and 31 are unclear, i.e. the pathogenicity of these mutations is unclear. In patient 2, a homozygous mutation (C331G) was observed in the HEXB gene, which resulted in amino acid (Gln>Glu) substitution. In patient 5, heterozygous novel mutations, including G70A, G76A, and G45A in HEXA exon 14 and T713G in HEXB exon 3 were found. Also, in patient 12, a heterozygous mutation (DelG713) in HEXB exon 14 in a non-coding region was identified. This mutation had not been reported in any literature before. In patient 18, two novel heterozygous mutations in HEXA, including a T-to-C polymorphism and a DelG were identified in exon 14 and 3, respectively, but the pathogenicity of these mutations in this patient was unclear. In patient 22, polymorphism c.436I>V in HEXA exon 11 was found. In patient 26, three mutations were observed: a G80A homozygous mutation in HEXA (β subunit) intron 15, a G458A heterozygous mutation in HEXA (β subunit) intron 15, and a heterozygous mutation G744A in exon 5, which resulted in I207V. In patients 24 and 27, homozygous mutations (InsG in intron 5 of the HEXA β subunit) were found. In patients 30 and 31, two mutation (DelA in exon 3), which had not been previously reported in other populations, were found (Table 2).

Discussion

In recent decades, early stage detection and carrier screening programs for specific inherited disorders (which occur more frequently within a particular group in the general population) have effectively reduced the occurrence of a disease. High carrier frequency in a target population for a recessive genetic disorder is the prerequisite for the establishment of a carrier screening program. In addition to the frequency of a carrier in a target population, investigation of the carrier frequency in a similar population from different countries is also important, since migration between countries lead to the establishment of populations with mix origins.

Previously, Haghighi et al. [19] reported two mutations, including a missense mutation (c.1A4G [p.MIV]), which altered the initiation methionine to a Val, and one nonsense mutation (c.1177C4T [p.R393X] in exon 11) in 3 patients in an Iranian population. Approximately 20% of the Ashkenazi carriers harbored a splice junction defect, while almost 80% bore a 4-bp insertion, TATC, in exon 11 of the HEXA gene with Tay-Sachs disease [20]. Additionally, this mutation was accounted as the major mutation detected in non-Jewish populations at a frequency of 30% [21], while it was accounted for approximately 6% (patients 19 and 20) in our study. The G to A transition in exon 5 in a CpG dinucleotide, which resulted in Arg170 Gln, was found in ~6% of mutations (patients 6 and 10 with heterozygous mutation) in this study. This mutation is a disease-causing mutation inactivating the α subunit of the HEXA gene and was previously reported in Japanese infants with TSD [22] and in Moroccan Jewish populations [23, 24].

A 12-bp Del (TTAGGCAAGGGC) in exon 10 of the α subunit of HEXA was reported in patient 3 (homozygote) and non-affected patients 13 and 14 (heterozygote). This mutation was reported previously in TSD patients in a Turkish population. In patient 25, a c.1177C>T in exon 11 caused nonsense mutation p.R393X (heterozygous, not affected). This mutation was initially identified in French infants with TSD [25], and later in Turkish ones [26]. Two patients were found with mutations in exon 11 (c.436, A>G), which caused a change in Isoleucine (Iso)>Val. This mutation had been reported as a polymorphism in African-Americans and Ethiopian Jews [27]. Iso and Val are hydrophobic amino acids. Analysis of protein structure showed that the substitution of Iso>Val caused an increase in stability of the protein structure. In addition to this mutation, in patient 18, a heterozygous mutation (T>C) in exon 14 of HEXA caused a nonsense mutation (p.R510X), where homozygosity for this mutation predicts the production of premature termination of enzyme. Generally, nonsense and frame-shift mutations result in the reduction of mRNA in the HEXA gene. Diminished amount of mRNA has been reported in several mutations in the HEXA gene: Tyr180Stop in exon 5 of HEXA in Moroccan Jews, and Arg137 stop codon in exon 3 [23]. In patients 30 and 31, DelA in exon 3 (heterozygote) was observed, which this homozygous Del might be able to cause the disease. In addition, DelG in exon 3 (heterozygous mutation), which was not reported before, was found in patient 18.

In addition to the mutations in α subunit of HEXA, three mutations were identified in the β subunit of the HEXA gene in non-coding regions. Patient 26 showed two heterozygous mutations (G80A and G458A) in Intron 15 of the β subunits, and patient 27 showed a heterozygous mutation (insertion G) in intron 5. Since the clinical significance of novel mutations is unknown, further investigation is required to determine the role of novel TSD-causing mutations. Among the novel mutations found in this study, two mutations were found in HEXB: a homozygote mutation (c.331) in patient 2, which resulted in alteration of Gln>Glu, where the pathogenicity of this mutation is under investigation as well as DelG713 in the subunit of non-coding region exon 14 of HEXB, which had not been identified before [9]. Due to the lack of an effective therapy for TSD, current efforts have focused on

http://IBJ.pasteur.ac.ir
carrier screening programs to identify the TSD risk among Iranian population. This research may help in the understanding of the disease mechanism and may open up new experimental and therapeutic opportunities of TSD for diagnostic testing and also for future investigations.

ACKNOWLEDGMENTS

We would like to thanks all Iranian Tay-Sachs patients from the Medical Genetics Department, Special Medical Center, Tehran, Iran. This work was supported by a grant from Dr. M. Houshmand, to whom we give our greatest appreciation.

REFERENCES

