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ABSTRACT 
 

Background: Bone marrow stromal stem cells (BMSC) are appropriate source of multipotent stem cells that are 
ideally suited for use in various cell-based therapies. It can be differentiated into neuronal-like cells under 
appropriate conditions. This study examined the effectiveness of co-stimulation of creatine and retinoic acid in 
increasing the differentiation of BMSC into GABAergic neuron-like cells (GNLC). Methods: BMSC isolated from 
the femurs and tibias of adult rats were cultured in DMEM/F12 medium supplemented with 10% FBS, pre-induced 
using β-mercaptoethanol (βME) and induced using retinoic acid (RA) and creatine. Immunostaining of 
neurofilament 200 kDa, neurofilament 160 kDa, nestin, fibronectin, Gamma-amino butyric acid (GABA) and 
glutamic acid decarboxylase (GAD) 65/67 were used to evaluate the transdifferentiation of BMSC into GNLC and 
to evaluate the effectiveness of pre-induction and induction assays. The expression of genes that encode 
fibronectin, octamer-binding transcription factor 4 (Oct-4), GAD 65/67 and the vesicular GABA transporter was 
examined in BMSC and GNLC by using RT-PCR assays during transdifferentiation of BMSC into GLNC. 
Results: Co-stimulation with RA and creatine during the induction stage doubled the rates of GABAergic 
differentiation compared with induction using creatine alone, resulting in a 71.6% yield for GLNC. RT-PCR 
showed no expression of Oct-4 and fibronectin after the induction stage. Conclusion: The results of this study 
showed that the application of βME, RA, and creatine induced the transdifferentiation of BMSC into GLNC. Iran. 
Biomed. J. 17 (1): 8-14, 2013  
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INTRODUCTION 
 

amma-amino butyric acid (GABA), a major 
inhibitory neurotransmitter in the mammalian 
central nervous system, plays an important role 

in the positioning of neuronal precursors [1], 
maturation of neural circuitry during postnatal 
development [2] and the control of behaviorally 
relevant patterns and oscillations [3]. GABA also play 
an essential role during nervous system development 
including the proliferation and differentiation of nerve 
cells into neural circuits and networks [4]. GABA are 
secreted by neurons and glial cells as a 
neurotransmitter and act as an inducer and regulator of 
the nervous system [4]. GABA-secreting neurons are 
referred to as GABAergic neurons [4]. Dysfunction of 
GABAergic neurons have been strongly associated 

with many neurological disorders, including 
Huntington’s disease [5] schizophrenia, bipolar 
depression [6], autism, mood disorders, epilepsy and 
Alzheimer’s disease [4-6]. Given that GABAergic 
neurons have been used to treat ischemic injuries [7], 
transplantation of GABAergic neurons may provide a 
feasible therapeutic approach for various diseases.  

Bone marrow stromal stem cells (BMSC) are 
currently considered as potential agents for stem cell-
based therapy. Enthusiasm about their potential is 
based on the capacity of BMSC to differentiate into 
neural cells, the ease with which BMSC can be isolated 
and expanded and the low frequency of immunological 
rejection of BMSC [8]. 

The in vitro differentiation of BMSC into 
chondrogenic, adipogenic, osteogenic, myogenic and 
other lineages have been reported using different 

G

 [
 D

O
I:

 1
0.

60
91

/I
B

J.
11

12
.2

01
2 

] 
 [

 D
O

R
: 2

0.
10

01
.1

.1
02

88
52

.2
01

3.
17

.1
.6

.4
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ib
j.p

as
te

ur
.a

c.
ir

 o
n 

20
25

-1
0-

25
 ]

 

                               1 / 7

http://dx.doi.org/10.6091/IBJ.1112.2012
https://dor.isc.ac/dor/20.1001.1.1028852.2013.17.1.6.4
http://ibj.pasteur.ac.ir/article-1-812-en.html


Iran. Biomed. J., January 2013                              Generation of GABAergic Neurons Using Creatine                                                  9 

 
http://IBJ.pasteur.ac.ir 

induction protocols [8-10]. Gharibani et al. [10] 
showed that BMSC were transdifferentiated into 
GABAergic neuron-like cells (GNLC) after pre-
induction in the presence of β-mercaptoethanol (βME) 
and retinoic acid (RA), followed by induction in the 
presence of potassium chloride. Creatine, which is 
synthesized from the amino acid arginine, glycine and 
methionine, serves as a substrate for creatine kinase 
(CK) and regulates cellular ATP levels. Previously, 
creatine was shown to induce the differentiation of the 
striatal GABAergic neurons [11]. The present study 
showed an induction protocol for transdifferentiation 
of BMSC into GLNC, which uses RA and creatine as 
inducers. We improved the yield of GNLC generated 
from BMSC. 
 
 

MATERIALS AND METHODS 
 

Preparation of rat bone marrow cells. All animal 
experiments in this study were based on approved 
protocols that follow the guidelines of the Ethical 
Committee at Tarbiat Modares University (Tehran, 
Iran). Adult female Sprague-Dawley rats (200-250 g) 
were obtained from the Razi Vaccine and Serum 
Research Institute (Tehran, Iran). BMSC were 
collected by marrow aspiration of the shafts of femurs 
and tibias into DMEM/F12 (GIBCO, BRL, Eggenstein, 
Germany) supplemented with 10% FBS using a 21-G 
needle. Cells were separated through gentle pipetting 
and filtered through a 60-µm nylon mesh. The cells 
were then washed in PBS and centrifuged at 400 × g 
for 5 min. The cells were seeded onto 25-cm2 flasks 
containing DMEM/F12 medium supplemented with 
10% FBS, 100 U/ml penicillin/streptomycin (GIBCO, 
BRL, Eggenstein, Germany) and 2.5 µg/ml fungizone 
(Invitrogen, Paisley, Scotland). They were then 
incubated at 37°C in 95% relative humidity and 5% 
CO2 for 2 days. Any non-adherent cells in the flasks 
were discarded. Upon reaching confluence, the cells 
were harvested by treating with 0.25% trypsin and 1 
mM EDTA at 37°C for 5 min, split at a ratio of 1:3 and 
propagated until the third passage. The viability of the 
cell cultures was 95%. Cells from the third passage 
were then used for RT-PCR and immunostaining 
analyses using the following marker fibronectin, 
octamer-binding transcription factor 4 (Oct-4), 
glutamic acid decarboxylase 1 and 2 (GAD1 and 
GAD2) and vesicular GABA transporter (VGAT). The 
experiments involved two stages of culture, namely 
pre-induction and induction. Pre-induction was 
performed by seeding the cells onto the 24-well plates 
at a density of 104 cells/cm2, replacing the culture 
medium with serum-free DMEM-F12 (Gibco, BRL) 
containing 1 mM βME and 2% B27and then incubating 

the cells for 24 h [6]. To determine the optimal dose 
and time for induction, pre-induced cells were treated 
with different concentrations of creatine(0, 2.5, 5 and 
10 mM), which were added to the DMEM-F12 culture 
medium containing 5% FBS and 2% B27 on days 1, 2, 
4 and 6 of the induction stage. The percentage of 
immunoreactive cells was used as a parameter to 
determine the extent of the induction. After 
determining the optimal exposure time and dose of 
creatine for induction of the cells, the cells were then 
co-stimulated with creatine and 10 µM RA.  
 

Immunocytochemistry. Pre-induced and induced 
third-passage BMSC were washed three times in 0.1 M 
PBS, fixed in 4% paraformaldehyde at room 
temperature for 30 min, pre-incubated in 0.1% Triton 
X-100 in PBS plus 10% FBS for 1 h, washed in PBS 
and incubated with the primary antibody at 4°C 
overnight, then rinsed 3 times in PBS. The cells were 
incubated with the secondary antibody at room 
temperature for 2 h. All antibodies were purchased 
from Millipore, Germany except the secondary 
antibody. The secondary antibodies used were anti-
rabbit IgG antibody conjugated with fluorescein 
isothiocyanate (FITC, 1:300; Chemicon, Hofheim, 
Germany)and anti-mouse IgG antibody conjugated 
with FITC (1:100; Millipore, Germany). The cells were 
then rinsed twice in PBS for 15 min and counterstained 
with ethidium bromide for 1 min to visualize the 
nuclei. The cells were washed again in PBS and 
examined using a fluorescence microscope (Olympus 
model, 1 × 71, Japan). The following primary 
antibodies and dilutions were used: mouse anti-CD106 
monoclonal antibody (1:300; Millipore), mouse anti-
CD31 monoclonal antibody (1:200; Millipore), rabbit 
anti-CD45 polyclonal antibody (1:300; Millipore), 
mouse anti-CD90 monoclonal antibody (1:300; 
Millipore), anti-CD44 monoclonal antibody (1:200; 
Millipore), mouse anti-CD34 monoclonal antibody 
(1:300; Millipore), mouse anti-fibronectin monoclonal 
antibody (1:400 Millipore), mouse anti-nestin 
monoclonal antibody (1:300; Millipore), mouse anti-
neurofilament 200 kDa (anti-NF-H) monoclonal 
antibody (1:400; Millipore), mouse anti-neurofilament 
160 kDa (anti-NF-M) monoclonal antibody (1:300; 
Millipore) and mouse anti-GABA monoclonal 
antibody (1:500). The number of immunoreactive cells 
was determined to estimate the percentage of 
immunoreactive cells. A random table was used to 
select the fields and in total, 200 cells were counted 
[12]. Immunostaining assays were performed in 
triplicate for each marker. 

 
RT-PCR. Total cellular RNA was isolated from the 

BMSC and the GLNC by using the High Pure RNA 
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Isolation Kit (Roche Biochemicals, Mannheim, 
Germany). This was followed by treatment with DNase 
I amplification grade kit (Invitrogen, Paisley, 
Scotland). Single-stranded cDNA was subsequently 
generated using a first-strand cDNA synthesis kit (MBI 
Fermentas, Vilnius, Lithuania) and cDNA 
amplification was performed with the following 
primers: fibronectin (GenBank ID: NM01914), 5′-
CTGTCCTGTGGCTGTGTCC-3′ (sense) and 5′-
CAGTAGTAAAGTGTTGGCATGT-3′ (antisense, 
221-bp product); Oct4 (GenBank ID: NM001009178), 
5′-GGCTGTGTCCTTTCCTCT-3′ (sense) and 5′-
TCTCTTTGTCTACCTCCCTTC-3′ (antisense, 217 
bp); GAD1 (GenBank ID: NM017007), 5′-
AACAGTAGAGACCCCAAGAC-3′ (sense) and 5′-
GCAGATCTTGAGCAAACAG-3′ (antisense, 336 
bp); GAD2 (GenBank ID: NM012563), 5′-AGAGA 
GGAGGGACTGATGC-3′ (sense) and 5′-TTGTGTG 
CTGAGGCTTCC-3′ (antisense, 279 bp); VGAT 
(GenBank ID: NM031782), 5′-TTCCTATCTCCAT 
CGGCATC-3′ (sense) and 5′-TCCGTGATGACTTCC 
TTGG-3′ (antisense, 198 bp). All procedures were 
performed according to the manufacturer’s 
instructions. Following 34 cycles of amplification in a 
thermocycler, PCR products were resolved by 2% 
agarose gel electrophoresis and stained with ethidium 
bromide. The fluorescent bands were photographed 
using a gel documentation system (Uvtec D55, 
France).  
 

Statistical analysis. The results were analyzed using 
the SPSS software release 13 (SPSS Inc., Chicago, IL, 
USA) and analysis of variance (ANOVA) with 
Tukey’s multiple test for comparison among groups. 
 
 

RESULTS 
 

Preparation of bone marrow stromal stem cells. 
BMSC (third passage) were immunostained with 
antibodies against CD90 (Fig. 1A) and CD44 (Fig. 
1B), both of which are markers of mesenchymal stem 
cells, as well as with antibodies against CD106 (Fig. 
1C), which is a marker of mesenchymal stem cells 
derived from BMSC. The cells were negatively 
immunostained with antibodies against CD34 (Fig. 
1D), CD45 (a hematopoietic cell marker, Fig. 1E) and 
CD31 (an endothelial cell marker, Fig. 1F). 
 

Dose response and time course. At pre-induction 
stage, βME (24 h) and B27 effects were done using 
immunoreactive cells for different antibodies. The 
expression of fibronectin was decreased during the pre- 
induction  stage,  whereas  the expression of nestin and 

 
 
 

Fig. 1. Immunostaining of BMSC for different markers of cell 
differentiation. (A) CD90, (B) CD44, (C) CD106, (D) CD34, 
(E) CD45 and (F) CD31. BMSC were immunolabeled with 
primary antibody, incubated with FITC-conjugated secondary 
antibody and counter-stained using ethidium bromide. 
 

 
NF-M was increased. Although the level of NF-H 
expression increased during the pre-induction stage, 
the increase in the level of GABA was not 
considerable. We thus performed an induction stage to 
increase GABA expression in pre-induced cells. 

A dose-response analysis that involved immune-
staining with anti-GABA antibody was conducted to 
determine the optimal dose of creatine for trans-
differentiation of BMSC to GNLC. Figure 2 shows the 
means and the standard errors of the means of the data 
collected using the immunoreactive cells.  These data 
revealed positive correlations between rates of 
transdifferentiation and both the duration of exposure 
to creatine and the concentration of creatine. A time-
dependent increase in GABA expression was observed 
in all creatine doses tested. 

Treatment of pre-induced cells with creatine at 
concentrations of 1, 2.5, 5 and 10 mM on days 1, 2, 4, 
and 6, respectively showed that GABA expression in 
GLNC was significantly higher after treatment with 5 
mM creatine (without RA) for 4 days (30.8% ± 1.4) 
when  compared  with  the  other  doses of creatine and  
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Fig. 4. Photomicrographs of bone marrow stromal stem cells 
(BMSC) and GNLC derived from BMSC after immunostaining. 
Cells were labeled with primary antibody against the following 
markers: fibronectin in BMSC (A) and nestin(B), neurofilament 
160 (C), neurofilament 200 (D), GAD65/67 (E) and GABA (F) 
in GNLC, followed by incubation with secondary antibody 
conjugated to fluorescein isothiocyanate. Nuclei were 
counterstained with ethidium bromide (1 µg/ml). [Scale bars: A, 
C and E = 50 µm and B, D and F = 20 µm]. 
 
 

the number of NF-H immunoreactive neurons suggests 
that the majority of the dividing cells possessed an 
immature neuronal phenotype [9, 21]. The high 
percentage of cells that were immunoreactive for nestin  

indicated that most of the cells in the cultures were 
neural progenitors. The results of this study 
demonstrate that BMSC can efficiently differentiate 
into GNLC in the presence of a combination of RA and 
creatine, thus providing an alternative technique for 
generating sufficient numbers of GNLC from BMSC. 
This RA-creatine treatment combination resulted 
significantly in a higher percentage of GNLC as 
compared to treatment with creatine alone. 
Interestingly, treatment with creatine alone caused only 
a slight (30%) increase in the total number of 
GABAergic neurons. Among reagents used to 
differentiate embryonic stem cells into the neural 
progenitors, RA remains the most effective result [22, 
23]. This study demonstrates that exposure of rat 
BMSC to RA promotes the differentiation of neuronal 
precursors into GNLC (71.6%). Previous studies have 
shown that endogenous and exogenous RA are needed 
for GABAergic differentiation from embryoid bodies-
derived from embryonic stem cells [23, 24]. 

In the central nervous system, creatine serves as a 
substrate for various isoforms of creatine kinase, 
including cytosolic brain-specific creatine kinase and 
ubiquitous mitochondrial creatine kinase and possibly 
induces more inhibitory synapses [25, 26]. The 
phosphocreatine system plays a key role in regulating 
ATP metabolism by promoting energy homeostasis 
[27]. Moreover, creatine imparted neuroprotective 
effects against various toxic insults in rat fetal ventral 
mesencephalic and striatal cultures [11, 28] and 
prevented complications related to traumatic brain 
injury in children and adolescents [29].  

Andres et al. [11] have shown that creatine directly 
influences the differentiation of neural stem cells into 
GABAergic neurons. Chatzi et al. [30] have shown 
that 93-96% of embryonic bodies cultured in neural

 
 

 
 

Fig. 5. RT-PCR analysis of bone marrow stromal stem cells (BMSC, upper panel) and GABAergic-like neurons transdifferentiated 
from BMSC (lower panel) using primers that specifically amplify transcripts that encode GAD1 (GAD67), GAD2 (GAD65), VGAT, 
fibronectin (Fn) and Oct-4. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) serves as an internal control housekeeping gene and 
negative control (Neg; RT-PCR with all of the RT-PCR components except the DNA template). 
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media were differentiated into GABAergic neurons. 
Gharibani et al. [10] have reported that sequential 
treatment of BMSC with βME and RA followed by 
potassium chloride resulted in a 60% differentiation 
rate into GABAergic neurons. More recently, 
Gharibani et al. [31] have demonstrated the same 
proportion of GNLC (60%) using creatine as an 
inducer.  

In this study, there was a significant increase in the 
yield of GNLC despite the use of creatine as an 
inducer. This issue demonstrates the importance of RA 
as a co-stimulator with creatine. The induction of 
neurotrophins may account for the action of creatine in 
the transdifferentiation of BMSC into cells with a 
GABAergic phenotype [31]. 

The results of this study showed that 71.6% of the 
BMSC were transformed into GLNC. The values 
obtained in this study are relatively high despite the 
heterogeneous nature of BMSC population when 
compared with broadly comparable studies that used 
neural stem cells and embryonic stem cells. 

To understand the mechanisms that mediate creatine-
induced differentiation, Andres et al. [28] have 
investigated the possible involvement of mitogen-
activated protein kinase (MAPK) signal pathways. The 
canonical MAPK pathway has emerged as a major 
contributor to plasticity in vertebrates. MAPK are a 
family of serine/threonine kinases that include the 
extracellular-signal-regulated protein kinases [32]. 
These kinases are strongly activated by mitogens and 
in the central nervous system by neurotrophins and 
neurotransmitters. Creatine has been found to 
upregulate the expression of neurotrophins [31]. 
Neurotrophins are major effectors of signal 
transduction from the cell surface to the nucleus and 
are implicated in cell growth and differentiation [28, 
32]. On the other hand, MAPK signaling is required for 
RA-triggered G0 cell cycle arrest and cell 
differentiation [33, 34]. 

Our findings may have significant implications for 
cell replacement therapies for the treatment of 
neurological disease. The induction of the GABAergic 
phenotype in BMSC by creatine and RA may increase 
yields of GLNC relative to the best current options. In 
addition, the differentiation-promoting properties of 
creatine demonstrated in the present study may also be 
relevant to both understanding and manipulating cell-
fate decisions for a range of stem cells. 
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