Volume 29, Issue 3 (5-2025)                   IBJ 2025, 29(3): 104-113 | Back to browse issues page

Ethics code: IR.ARAKMU.REC.1402.148


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khani M, Latifi A, Sayyadi M. Multifaceted Cooperation Between WNT and PI3K Signaling Axis through the Long Noncoding RNA SNHG16 and TCF7 in de novo Acute Lymphoblastic Leukemia Patients. IBJ 2025; 29 (3) :104-113
URL: http://ibj.pasteur.ac.ir/article-1-5031-en.html
Abstract:  
Background: Acute lymphoblastic leukemia (ALL) is the most prevalent form of acute leukemia in children, arising from the known and unknown factors. This complexity has limited advancements in patient recovery. Recently, long noncoding RNAs lncRNA (lncRNA) molecules have emerged as significant but not fully understood players in leukemia research. Studies have indicated that c-Myc can stimulate and enhance gene expression through multiple pathways, particularly by activating the PI3K and WNT pathways. The present study investigated the expression levels of lncRNAs involved in the upstream regulation of the PI3K/WNT pathways in patients diagnosed with ALL.
Methods: This case-control cross-sectional study was conducted using RNA from blood samples. The study examined 36 patients with ALL and 36 healthy controls. The expression levels of SNHG16 and TCF7 lncRNAs and their target genes were determined using qRT-PCR.
Results: The expression of Akt, β-catenin and c-Myc genes in the patient group showed a significant increase compared to the control group (p < 0.05). The expression levels of SNHG16 and TCF7 were significantly elevated in ALL patients compared to the control group (p < 0.05). Furthermore, a significant positive correlation was observed between the expression levels of these two lncRNAs in the patient group (p < 0.05).
Conclusion: Our findings demonstrate that SNHG16 and TCF7 lncRNA may act as crucial regulators of the Akt and β-catenin in ALL, which in turn influence c-Myc expression levels in affected individuals. Further research is needed to better understand the molecular mechanisms underlying ALL, potentially leading to improved treatment and monitoring strategies for patients.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Hayashi H, Makimoto A, Yuza Y. Treatment of pediatric acute lymphoblastic leukemia: A historical perspective. Cancers. 2024;16(4):723. [DOI:10.3390/cancers16040723]
2. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146-62. [DOI:10.1016/S0140-6736(19)33018-1]
3. Raetz EA, Bhojwani D, Devidas M, Gore L, Rabin KR, Tasian SK, et al. Children's Oncology Group blueprint for research: Acute lymphoblastic leukemia. Pediatr Blood Cancer. 2023;70(6):30585. [DOI:10.1002/pbc.30585]
4. Schwartz MS, Muffly LS. Predicting relapse in acute lymphoblastic leukemia. Leuk Lymphoma. 2024;65(13):1934-40. [DOI:10.1080/10428194.2024.2387728]
5. Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol. 2024;116(1):18-32. [DOI:10.1093/jleuko/qiae015]
6. Hassani S, Rostami P, Pourtavakol M, Karamashtiani A, Sayyadi M. Correlation of SNHG7 and BGL3 expression in patients with de novo acute myeloid leukemia; Novel insights into lncRNA effect in PI3K signaling context in AML pathogenesis. Biochem Biophys Rep. 2024;40:101850. [DOI:10.1016/j.bbrep.2024.101850]
7. Tan Y-T, Lin J-F, Li T, Li J-J, Xu R-H, Ju H-Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2021;41(2):109-20. [DOI:10.1002/cac2.12108]
8. Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389-406. [DOI:10.1038/s41580-021-00447-6]
9. Yang M, Lu H, Liu J, Wu S, Kim P, Zhou X. lncRNAfunc: A knowledgebase of lncRNA function in human cancer. Nucleic Acids Res. 2021;50(1):1295-306. [DOI:10.1093/nar/gkab1035]
10. Sicurella M, De Chiara M, Neri LM. Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death. Cells. 2025;14(4):269. [DOI:10.3390/cells14040269]
11. Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract. 2023;249:154764. [DOI:10.1016/j.prp.2023.154764]
12. Yu L, Chen D, Song J. LncRNA SNHG16 promotes non‐small cell lung cancer development through regulating EphA2 expression by sponging miR‐520a‐3p. Thorac Cancer. 2020;11(3):603-11. [DOI:10.1111/1759-7714.13304]
13. Gong C-Y, Tang R, Nan W, Zhou K-S, Zhang H-H. Role of SNHG16 in human cancer. Clin Chim Acta. 2020;503:175-80. [DOI:10.1016/j.cca.2019.12.023]
14. Shi M, Yang R, Lin J, Wei Q, Chen L, Gong W, et al. LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci. 2021;46:4. [DOI:10.1007/s12038-020-00127-1]
15. Xiao Y, Xiao T, Ou W, Wu Z, Wu J, Tang J, et al. LncRNA SNHG16 as a potential biomarker and therapeutic target in human cancers. Biomark Res. 2020;8(41):1-11. [DOI:10.1186/s40364-020-00221-4]
16. Wu B, Chen M, Gao M, Cong Y, Jiang L, Wei J, et al. Down-regulation of lncTCF7 inhibits cell migration and invasion in colorectal cancer via inhibiting TCF7 expression. Hum Cell. 2019;32(1):31-40. [DOI:10.1007/s13577-018-0217-y]
17. King CM, Ding W, Eshelman MA, Yochum GS. TCF7L1 regulates colorectal cancer cell migration by repressing GAS1 expression. Sci Rep. 2024;14(1):12477. [DOI:10.1038/s41598-024-63346-8]
18. Wu J, Zhang J, Shen B, Yin K, Xu J, Gao W, et al. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. J Exp Clin Cancer Res. 2015;34(116):1-10. [DOI:10.1186/s13046-015-0229-3]
19. Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol. 2022;7(71):1920. [DOI:10.1126/sciimmunol.abm1920]
20. Ding T, Deng R, Huang T. Long non-coding RNA T cell factor 7 is associated with increased disease risk and poor prognosis, and promotes cell proliferation, attenuates cell apoptosis and miR-200c expression in multiple myeloma. Oncol Lett. 2021;21(2):129. [DOI:10.3892/ol.2020.12390]
21. Evangelisti C, Chiarini F, Cappellini A, Paganelli F, Fini M, Santi S, et al. Targeting Wnt/β‐catenin and PI3K/Akt/mTOR pathways in T‐cell acute lymphoblastic leukemia. J Cell Physiol. 2020;235(6):5413-28. [DOI:10.1002/jcp.29429]
22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− ΔΔCT) method. Methods. 2001;25(4):402-8. [DOI:10.1006/meth.2001.1262]
23. Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute lymphoblastic leukemia immunotherapy treatment: Now, next, and beyond. Cancers. 2023;15(13):3346. [DOI:10.3390/cancers15133346]
24. Lobo-Alves SC, Oliveira LA, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol. 2024:196:104290. [DOI:10.1016/j.critrevonc.2024.104290]
25. Illarregi U, Telleria J, Bilbao-Aldaiturriaga N, Lopez-Lopez E, Ballesteros J, Martin-Guerrero I, et al. lncRNA deregulation in childhood acute lymphoblastic leukemia: A systematic review. Int J Oncol. 2022;60(5):59. [DOI:10.3892/ijo.2022.5348]
26. Yousefi H, Purrahman D, Jamshidi M, Lak E, Keikhaei B, Mahmoudian-Sani M-R. Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol. 2022;24(11):2081-9. [DOI:10.1007/s12094-022-02886-9]
27. Duffy MJ, O'Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154. [DOI:10.1016/j.ctrv.2021.102154]
28. Ala M. Target c-Myc to treat pancreatic cancer. Cancer Biol Ther. 2022;23(1):34-50. [DOI:10.1080/15384047.2021.2017223]
29. Donati G, Amati B. MYC and therapy resistance in cancer: Risks and opportunities. Mol Oncol. 2022;16(21):3828-54. [DOI:10.1002/1878-0261.13319]
30. Sayyadi M, Safaroghli-Azar A, Safa M, Abolghasemi H, Momeny M, Bashash D. NF-κB-dependent mechanism of action of c-Myc inhibitor 10058-F4: Highlighting a promising effect of c-Myc inhibition in leukemia cells, irrespective of p53 status. Iran J Pharm Res. 2020;19(1):153-65.
31. Gaggianesi M, Mangiapane LR, Modica C, Pantina VD, Porcelli G, Di Franco S, et al. Dual inhibition of myc transcription and PI3K activity effectively targets colorectal cancer stem cells. Cancers. 2022;14(3):673. [DOI:10.3390/cancers14030673]
32. Kong D, Fan S, Sun L, Chen X, Zhao Y, Zhao L, et al. Growth inhibition and suppression of the mTOR and Wnt/β‐catenin pathways in T‐acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol. 2021;39(2):222-30. [DOI:10.1002/hon.2831]
33. Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024;25(6):3178. [DOI:10.3390/ijms25063178]
34. Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res. 2012;18(4):930-7. [DOI:10.1158/1078-0432.CCR-10-1613]
35. Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, et al. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep. 2022;12(1):4043. [DOI:10.1038/s41598-022-08049-8]
36. Zhang H, Wang Y, Yang H, Huang Z, Wang X, Feng W. TCF7 knockdown inhibits the imatinib resistance of chronic myeloid leukemia K562/G01 cells by neutralizing the Wnt/β‑catenin/TCF7/ABC transporter signaling axis. Oncol Rep. 2021;45(2):557-68. [DOI:10.3892/or.2020.7869]
37. Shen G-y, Huang R-Z, Yang S-B, Shen R-Q, Gao J-L, Zhang Y. High SNHG expression may predict a poor lung cancer prognosis based on a meta-analysis. BMC Cancer. 2023;23(1):1243. [DOI:10.1186/s12885-023-11706-4]
38. Ke D, Wang Q, Ke S, Zou L, Wang Q. Long-non coding RNA SNHG16 supports colon cancer cell growth by modulating miR-302a-3p/AKT axis. Pathol Oncol Res. 2020;26(3):1605-13. [DOI:10.1007/s12253-019-00743-9]
39. Yang M, Wei W. SNHG16: A novel long-non coding RNA in human cancers. Onco Targets Ther. 2019:11679-90. [DOI:10.2147/OTT.S231630]
40. Zhang C, Chu M, Fan Y, Wu L, Li Z, Ma X, et al. Long non‐coding RNA T‐cell factor 7 in multiple myeloma: A potential biomarker for deteriorated clinical features and poor prognosis. J Clin Lab Anal. 2020;34(9):23400. [DOI:10.1002/jcla.23400]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb