Volume 29, Issue 1 And 2 (1-2025)                   IBJ 2025, 29(1 And 2): 89-82 | Back to browse issues page

Ethics code: IR.UMSHA.REC.1401.485


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molaei P, Mahdavinezhad A, Najafi R, Hashemi M, Tapak L, Afshar S. Role of hsa_Circ_0001821 in Colorectal Cancer Pathogenesis and Response to 5-Fluorouracil through miR-203a-3p/FGF-2 Axis. IBJ 2025; 29 (1 and 2) :89-82
URL: http://ibj.pasteur.ac.ir/article-1-4942-en.html
Abstract:  
Background: Chemoresistance, the primary cause of disease relapse and treatment failure, poses a significant challenge in the treatment of CRC. Understanding the molecular mechanisms that underlie the pathogenesis and chemoresistance of colorectal tumor cells, as well as identifying novel therapeutic strategies, would be crucial. This study aimed to evaluate the role of hsa_Circ_0001821 in response to 5-FU in CRC, a topic that has not been examined to date.
Methods: The current study investigated the effect of hsa_Circ_0001821 suppression using interfering RNAs on the response of colorectal tumor cells to 5-FU. The expression levels of hsa_Circ_0001821, hsa-miR-203a-3p, BAX, BCL-2, and FGF-2 were determined via quantitative RT-PCR. Cell survival, migration rate, and apoptosis induction of colorectal tumor cells subjected to 5-FU treatment were assessed using the MTT test, scratch assay, and flow cytometry analysis, respectively.
Results: Knockdown of hsa_Circ_0001821 with siRNA increased the expression level of hsa-miR-203a-3p and decreased the expression level of FGF-2. Additionally, the knockdown of hsa_Circ_0001821 enhanced the sensitivity of colorectal tumor cells to 5-FU. This circRNA significantly affected the viability, apoptosis, and migration of tumor cells.
Conclusion: Our study reveals the potential role of hsa_Circ_0001821 in controlling the tumor cell viability and response to 5-FU by targeting the hsa-miR-203a-3p/FGF-2 axis. These findings enhance our understanding of the molecular mechanisms that influence chemotherapy response in CRC, paving the way for the identification of more effective treatments for this disease.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers. 2022;14(7):1732. [DOI:10.3390/cancers14071732]
2. Haggar FA, Boushey RP. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191-7. [DOI:10.1055/s-0029-1242458]
3. Krasteva N, Georgieva M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics. 2022;14(6):1213. [DOI:10.3390/pharmaceutics14061213]
4. Sharma V, Chouhan P, Pandey RK, Prajapati VK. Recent therapeutic strategies for the treatment of colon cancer. Colon Cancer Dx Therap. 2021;2:73-90. [DOI:10.1007/978-3-030-64668-4_4]
5. Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, et al. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med. 2023;12(10):11073-96. [DOI:10.1002/cam4.5594]
6. Liu Y, Li C, Liu H, Wang J. Circ_0001821 knockdown suppresses growth, metastasis, and TAX resistance of non‐small‐cell lung cancer cells by regulating the miR‐526b‐5p/GRK5 axis. Pharmacol Res Perspect. 2021;9(4):e00812. [DOI:10.1002/prp2.812]
7. Jiang W, Xia J, Xie S, Zou R, Pan S, Wang Z-w, et al. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat. 2020;50:100683. [DOI:10.1016/j.drup.2020.100683]
8. Peng Y, Tang D, Zhao M, Kajiyama H, Kikkawa F, Kondo Y. Long non-coding RNA: A recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev. 2020;39(3):825-35. [DOI:10.1007/s10555-020-09910-w]
9. Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, et al. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci. 2017;13(12):1497-1506. [DOI:10.7150/ijbs.22531]
10. Liu XY, Zhang Q, Guo J, Zhang P, Liu H, Tian ZB, et al. The role of circular RNAs in the drug resistance of cancers. Front Oncol. 2022;11:790589. [DOI:10.3389/fonc.2021.790589]
11. Xin C, Huang F, Wang J, Li J, Chen Q. Roles of circRNAs in cancer chemoresistance. Oncol Rep. 2021;46(4):225. [DOI:10.3892/or.2021.8176]
12. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20. [DOI:10.1186/s12943-018-0935-5]
13. Kong S, Yang Q, Tang C, Wang T, Shen X, Ju S. Identification of hsa_circ_0001821 as a novel diagnostic biomarker in gastric cancer via comprehensive circular RNA profiling. Front Genet. 2019;10:878. [DOI:10.3389/fgene.2019.00878]
14. Song Y, Cao P, Li J. Plasma circular RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for malignant tumors. J Clin Lab Anal. 2021;35(11):e24009. [DOI:10.1002/jcla.24009]
15. Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 2018;14(3):321-30. [DOI:10.7150/ijbs.24360]
16. Chen L, Gao H, Liang J, Qiao J, Duan J, Shi H, et al. miR-203a-3p promotes colorectal cancer proliferation and migration by targeting PDE4D. Am J Cancer Res. 2018;8(12):2387-401.
17. Jiang N, Jiang X, Chen Z, Song X, Wu L, Zong D, et al. MiR-203a-3p suppresses cell proliferation and metastasis through inhibiting LASP1 in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2017;36(1):138. [DOI:10.1186/s13046-017-0604-3]
18. Zhu Y, Liu Y, Xiao B, Cai H, Liu M, Ma L, et al. The circular RNA PVT1/miR-203/HOXD3 pathway promotes the progression of human hepatocellular carcinoma. Biol Open. 2019;8(9):bio043687. [DOI:10.1242/bio.043687]
19. Fu XF, Zhao HC, Yang CL, Chen CZ, Wang K, Gao F, et al. MicroRNA 203 3p inhibits the proliferation, invasion and migration of pancreatic cancer cells by downregulating fibroblast growth factor 2. Oncol Lett. 2021;22(2):626. [DOI:10.3892/ol.2021.12887]
20. Sargent JM. The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Result Cancer Res. 2003:161:13-25. [DOI:10.1007/978-3-642-19022-3_2]
21. Supino R. MTT assays. In vitro toxicity testing protocols. MIMB. 1995;(43):137-49. [DOI:10.1385/0-89603-282-5:137]
22. Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, et al. Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success. Adv Cancer Biol-Met. 2024;10:100114. [DOI:10.1016/j.adcanc.2024.100114]
23. Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8(35):59950-64. [DOI:10.18632/oncotarget.19048]
24. Palcau AC, Canu V, Donzelli S, Strano S, Pulito C, Blandino G. CircPVT1: A pivotal circular node intersecting long non-coding-PVT1 and c-MYC oncogenic signals. Mol Cancer. 2022;21(1):33. [DOI:10.1186/s12943-022-01514-y]
25. Ghafouri-Fard S, Khoshbakht T, Taheri M, Jamali E. A concise review on the role of CircPVT1 in tumorigenesis, drug sensitivity, and cancer prognosis. Front Oncol. 2021;11:762960. [DOI:10.3389/fonc.2021.762960]
26. Liu C, Mei T. Circ_0001821 potentiates cell growth, metastasis, and stemness in colorectal cancer by regulating miR-339-3p/CST1. Biochem Genet. 2023;61(4):1451-69. [DOI:10.1007/s10528-022-10329-x]
27. Yao W, Guo P, Mu Q, Wang Y. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother
28. Li D, Wei X, Xie K, Chen K, Li J, Fang J. A novel decoy receptor fusion protein for FGF-2 potently inhibits tumour growth. Br J Cancer. 2014;111(1):68-77. [DOI:10.1038/bjc.2014.282]
29. Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: A potential therapeutic target in colorectal cancer. Cancer Lett. 2011;309(2):209-19. [DOI:10.1016/j.canlet.2011.06.009]
30. Entezari M, Soltani BM, Sadeghizadeh M. MicroRNA-203a inhibits breast cancer progression through the PI3K/Akt and Wnt pathways. Sci Rep. 2024;14(1):4715. [DOI:10.1038/s41598-024-52940-5]
31. Qian Z, Gong L, Mou Y, Han Y, Zheng S. MicroRNA 203a 3p is a candidate tumor suppressor that targets thrombospondin 2 in colorectal carcinoma. Oncol Rep. 2019;42(5):1825-32. [DOI:10.3892/or.2019.7310]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb