1. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr Trop Med Rep. 2021;8(2):121-32. [
DOI:10.1007/s40475-021-00232-7]
2. WHO. Leishmaniasis: WHO 2023 [Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
3. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6:750. [
DOI:10.12688/f1000research.11120.1]
4. Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol. 2017;9(9):170165. [
DOI:10.1098/rsob.170165]
5. Arjmand M, Madrakian A, Khalili G, Najafi Dastnaee A, Zamani Z, Akbari Z. Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy. IBJ. 2016;20(2):77-83.
6. Subramanian A, Sarkar RR. Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep. 2017;7(1):10262. [
DOI:10.1038/s41598-017-10743-x]
7. Amiri-Dashatan N, Rezaei-Tavirani M, Zali H, Koushki M, Ahmadi N. Quantitative proteomic analysis reveals differentially expressed proteins in Leishmania major metacyclogenesis. Microb Pathog. 2020;149:104557. [
DOI:10.1016/j.micpath.2020.104557]
8. Inbur E, Hughitt VK, Dillon LA, Ghosh K, El-Sayed NM, L Sacks D. The transcriptome of Leishmania major developmental stages in their natural sand fly vector. mBio. 2017;4(2):e00029-17. [
DOI:10.1128/mBio.00029-17]
9. Alcolea PJ, Alonso A, Molina R, Jiménez M, Myler PJ, Larraga V. Functional genomics in sand fly-derived Leishmania promastigotes. Plos Negl Trop Dis. 2019;13(5):e0007288. [
DOI:10.1371/journal.pntd.0007288]
10. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics. 2016;55(1):14.10.1-14.10.91. [
DOI:10.1002/cpbi.11]
11. Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1):622-31. [
DOI:10.1093/nar/gkab1062]
12. Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia HR, Fujiwara T, et al. Biological magnetic resonance data bank. Nucleic Acids Res. 2023;51(D1):368-76. [
DOI:10.1093/nar/gkac1050]
13. Fernandes MC, Dillon LA, Belew AT, Bravo HC, Mosser DM, El-Sayed NM. Dual transcriptome profiling of Leishmania-infected human macrophages reveals distinct reprogramming signatures. mBio. 2016;7(3):e00027-16. [
DOI:10.1128/mBio.00027-16]
14. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. [
DOI:10.1093/bioinformatics/btu170]
15. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8. [
DOI:10.1093/bioinformatics/btw354]
16. Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, et al. TriTrypDB: An integrated functional genomics resource for kinetoplastida. Plos Negl Trop Dis. 2023;17(1):e0011058. [
DOI:10.1371/journal.pntd.0011058]
17. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. [
DOI:10.1038/nmeth.1923]
18. 18. Robinson MD, McCarthy DJ, Smyth GK. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. [
DOI:10.1093/bioinformatics/btp616]
19. 19. Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35(Web Server issue):193-200. [
DOI:10.1093/nar/gkm226]
20. 20. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-61 [
DOI:10.1093/nar/gkw1092]
21. Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. Brief Bioinform. 2021;22(5):bbab108. [
DOI:10.1093/bib/bbab108]
22. Marta Silva A, Cordeiro-de-Silva A, Coombs GH. Metabolic variation during development in culture of Leishmania donovani promastigotes. Plos Negl Trop Dis. 2011;5(12):e1451. [
DOI:10.1371/journal.pntd.0001451]
23. Yuan M, Vásquez-Valdivieso MG, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of Leishmania fructose-1,6-bisphosphatase reveal species-specific differences in the mechanism of allosteric inhibition. J Mol Biol. 2017;429(20):3075-89. [
DOI:10.1016/j.jmb.2017.08.010]
24. Sernee MF, Ralton JE, Dinev Z, Khairallah GN, O'Hair RA, Williams SJ, et al. Leishmania β-1,2-mannan is assembled on a mannose-cyclic phosphate primer. Proc Natl Acad Sci U S A. 2006;103(25):9458-63. [
DOI:10.1073/pnas.0603539103]
25. Garami A, Ilg T. Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J. 2001;20(14):3657-66. [
DOI:10.1093/emboj/20.14.3657]
26. Akilov OE, Kasuboski RE, Carter CR, McDowell MA. The role of mannose receptor during experimental leishmaniasis. J Leukoc Biol. 2007;81(5):1188-96. [
DOI:10.1189/jlb.0706439]
27. Kumar A, Das S, Purkait B, Sardar AH, Ghosh AK, Dikhit MR, et al. Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother. 2014;58(10):6172-84. [
DOI:10.1128/AAC.02834-14]
28. Xiang L, Laranjeira-Silva MF, Maeda FY, Hauzel J, Andrews NW, Mittra B. Ascorbate-dependent peroxidase (APX) from Leishmania amazonensis is a reactive oxygen species-induced essential enzyme that regulates virulence. Infect immun. 2019;87(12):e00193-19. [
DOI:10.1128/IAI.00193-19]
29. Santos IFM, Moreira DS, Costa KF, Ribeiro JM, Murta SMF, Santi AMM. Ascorbate peroxidase modulation confirms key role in Leishmania infantum oxidative defence. Parasit Vectors. 2024;17(1):472. [
DOI:10.1186/s13071-024-06562-5]
30. Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania molecules and their potential contribution to the virulence of the parasite. Vet Sci. 2021;8(2):33. [
DOI:10.3390/vetsci8020033]
31. Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FF, Ferguson MA, et al. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis. Int J Parasitol. 2015;45(12):783-90. [
DOI:10.1016/j.ijpara.2015.06.004]
32. Jain S, Sahu U, Kumar A, Khare P. Metabolic pathways of Leishmania parasite: Source of pertinent drug targets and potent drug candidates. Pharmaceutics. 2022;14(8):1590. [
DOI:10.3390/pharmaceutics14081590]
33. Rodriguez-Contreras D, Feng X, Keeney KM, Bouwer HG, Landfear SM. Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Mol Biochem Parasitol. 2007;153(1):9-18. [
DOI:10.1016/j.molbiopara.2007.01.010]
34. Marchese L, Nascimento JF, Damasceno FS, Bringaud F, Michels PAM, Silber AM. The uptake and metabolism of amino acids, and their unique role in the biology of pathogenic trypanosomatids. Pathogens. 2018;7(2):36. [
DOI:10.3390/pathogens7020036]
35. Acuña SM, Aoki JI, Laranjeira-Silva MF, Zampieri RA, Fernandes JCR, Muxel SM, et al. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis. Plos one. 2017;12(11):e0187186. [
DOI:10.1371/journal.pone.0187186]
36. Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, et al. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol. 2018;8:2682. [
DOI:10.3389/fmicb.2017.02682]
37. Sienkiewicz N, Ong HB, Fairlamb AH. Characterisation of a putative glutamate 5-kinase from Leishmania donovani. FEBS J. 2018;285(14):2662-78. [
DOI:10.1111/febs.14511]
38. Saunders EC, Naderer T, Chambers J, Landfear SM, McConville MJ. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol Microbiol. 2018;108(2):143-58. [
DOI:10.1111/mmi.13923]
39. Burchmore RJS, Rodriguez-Contreras D, McBride K, Merkel P, Barrett MP, Modi G, et al. Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci U S A. 2003;100(7):3901-6. [
DOI:10.1073/pnas.0630165100]
40. Homsy JJ, Granger B, Krassner SM. Some factors inducing formation of metacyclic stages of Trypanosoma cruzi. J Protozool. 1989;36(2):150-3. [
DOI:10.1111/j.1550-7408.1989.tb01063.x]
41. Blum JJ. Effects of culture age and hexoses on fatty acid oxidation by Leishmania major. J Protozool. 1990;37(6):505-10. [
DOI:10.1111/j.1550-7408.1990.tb01256.x]
42. Darling TN, Davis DG, London RE, Blum JJ. Metabolic interactions between glucose, glycerol, alanine and acetate in Leishmania braziliensis panamensis promastigotes. J Protozool 1989;36(2):217-25. [
DOI:10.1111/j.1550-7408.1989.tb01077.x]
43. Lee SH, Stephens JL, Paul KS, T Englund P. Fatty acid synthesis by elongases in trypanosomes . Cell. 2006;126(4):691-9. [
DOI:10.1016/j.cell.2006.06.045]
44. Van Hellemond JJ, Opperdoes FR, Tielens AG. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc Natl Acad Sci U S A. 1998;95(6):3036-41. [
DOI:10.1073/pnas.95.6.3036]
45. Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, et al. Degradation of host sphingomyelin is essential for Leishmania Virulence. Plos Pathogens. 2009;5(12):e1000692. [
DOI:10.1371/journal.ppat.1000692]
46. Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM. Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J. 2003;22(22):6016-26. [
DOI:10.1093/emboj/cdg584]
47. Holeček M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12(3):848. [
DOI:10.3390/nu12030848]
48. Mantilla BS, Azevedo C, Denny PW, Saiardi A, Docampo R. The histidine ammonia lyase of trypanosoma cruzi is involved in acidocalcisome alkalinization and is essential for survival under starvation conditions. M Bio. 2021;12(6):e0198121. [
DOI:10.1128/mBio.01981-21]