Volume 28, Issue 4 (7-2024)                   IBJ 2024, 28(4): 179-191 | Back to browse issues page

Ethics code: IR.SBMU.RETECH.REC.1400.785


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saberi F, Dehghan Z, Taheri Z, Pilehchi T, Zali H. Deciphering Molecular Mechanisms of Cutaneous Leishmaniasis, Pathogenesis and Drug Repurposing through Systems Biology. IBJ 2024; 28 (4) :179-191
URL: http://ibj.pasteur.ac.ir/article-1-4177-en.html
Abstract:  
Background: Cutaneous leishmaniasis (CL) is a major health problem caused by an intracellular pathogen of the genus Leishmania. CL results in morphologically distinct skin injuries, ranging from nodules to plaques and ulcers, which persist as a recuperating incessant injury depending on the type of contaminating parasite. There is still no effective treatment to reduce the skin lesions in patients infected with CL. The aim of this study was to develop strategies to treat skin lesions in CL patients.
Methods: We retrieved the transcriptomic data of skin lesions from patients with CL and normal skin from the gene Expression Omnibus (GEO) database. The protein-protein interaction network (PPIN) was constructed using the STRING database and Cytoscape v3.10.1 software. Critical genes were identified by topological network analysis and cluster detection. Finally, gene ontology and repurposing drugs for critical genes were determined.
Results: CD8A, IFNG, IL-6, PTPRC, CCR7, TLR2, GSTA5, CYBB, IL-12RB2, ITGB2, FCGR3A, CTLA4, and IFNG were identified as the critical genes in PPIN and subnetworks. Enrichment analysis revealed that T-cell receptor signaling, toll-like receptor signaling, cytokine-cytokine receptor interaction, graft-versus-host disease, leishmaniasis, chemokine signaling, primary immunodeficiency, and Th17 cell differentiation were the major pathways associated with critical genes. The drug repurposing results identified cyclosporine, rituximab, infliximab, blinatumomab, and methylprednisolone as candidates for treatment of CL.
Conclusion: After validating our model with available experimental data, we found that critical molecules and drug candidates play a crucial role in the treatment of skin lesions caused by Leishmania in prospective studies. 

References
1. Mokni M. Cutaneous leishmaniasis. Ann Dermatol Venereol. 2019; 146(3):232-46. [DOI:10.1016/j.annder.2019.02.002]
2. de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022; 23(6):823-40. [DOI:10.1007/s40257-022-00726-8]
3. Shokri A, Abastabar M, Keighobadi M, Emami S, Fakhar M, Teshnizi SH, et al. Promising antileishmanial activity of novel imidazole antifungal drug luliconazole against Leishmania major: In vitro and in silico studies. J Glob Antimicrob Resist. 2018; 14:260-5. [DOI:10.1016/j.jgar.2018.05.007]
4. Madusanka RK, Silva H, Karunaweera ND. Treatment of cutaneous leishmaniasis and insights into species-specific responses: a narrative review. Infect Dis Ther. 2022; 11(2):695-711. [DOI:10.1007/s40121-022-00602-2]
5. Tiuman TS, Santos AO, Ueda-Nakamura T, Dias Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis. 2011; 15(8):e525-e32. [DOI:10.1016/j.ijid.2011.03.021]
6. Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020; 104(21):8965-77. [DOI:10.1007/s00253-020-10856-w]
7. Sameni M, Mirmotalebisohi SA, Dehghan Z, Abooshahab R, Khazaei-Poul Y, Mozafar M, et al. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech. 2023; 13(4):117. [DOI:10.1007/s13205-023-03518-x]
8. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007; 7(9):581-96. [DOI:10.1016/S1473-3099(07)70209-8]
9. Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 1991; 147(9):3149-55. [DOI:10.4049/jimmunol.147.9.3149]
10. Pinheiro RO, Rossi-Bergmann B. Interferon-gamma is required for the late but not early control of Leishmania amazonensis infection in C57Bl/6 mice. Mem Inst Oswaldo Cruz. 2007; 102(1):79-82. [DOI:10.1590/S0074-02762007000100013]
11. Moskowitz NH, Brown DR, Reiner SL. Efficient immunity against Leishmania major in the absence of interleukin-6. Infect Immun. 1997; 65(6):2448-50. [DOI:10.1128/iai.65.6.2448-2450.1997]
12. Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol. 2021; 74(9):548-52. [DOI:10.1136/jclinpath-2020-206927]
13. Ferreira TMV, Ferreira TC, Porto FMAX, da Silva Martins C, Neto BEL, de Freitas JCC, et al. CD45+, CD68+ and E-cadherin + expressions in skin dogs naturally infected by leishmania infantum. Acta Sci Vet. 2017; 45(1): 7. [DOI:10.22456/1679-9216.79402]
14. Alrumaihi F. The multi-functional roles of CCR7 in human immunology and as a promising therapeutic target for cancer therapeutics. Front Mol Biosci. 2022; 9:834149. [DOI:10.3389/fmolb.2022.834149]
15. Nunes S, Tibúrcio R, Bonyek-Silva I, Oliveira PR, Khouri R, Boaventura V, et al. Transcriptome analysis identifies the crosstalk between dendritic and natural killer cells in human cutaneous leishmaniasis. Microorganisms. 2023; 11(8):1937. [DOI:10.3390/microorganisms11081937]
16. Polari LP, Carneiro PP, Macedo M, Machado PRL, Scott P, Carvalho EM. Leishmania braziliensis Infection Enhances Toll-Like Receptors 2 and 4 Expression and Triggers TNF-α and IL-10 Production in Human Cutaneous Leishmaniasis. Front Cell Infect Microbiol. 2019; 9:120. [DOI:10.3389/fcimb.2019.00120]
17. Carneiro PP, Dórea AS, Oliveira WN, Guimarães LH, Brodskyn C, Carvalho EM, et al. Blockade of TLR2 and TLR4 attenuates inflammatory response and parasite load in cutaneous leishmaniasis. Front Immunol. 2021; 12:706510. [DOI:10.3389/fimmu.2021.706510]
18. Cruz K, Fonseca SG, Monteiro MC, Silva OS, Andrade VM, Cunha FQ, et al. The influence of glutathione modulators on the course of Leishmania major infection in susceptible and resistant mice. Parasite Immunol. 2008; 30(3):171-4. [DOI:10.1111/j.1365-3024.2007.01014.x]
19. Roma EH, Macedo JP, Goes GR, Gonçalves JL, Castro Wd, Cisalpino D, et al. Impact of reactive oxygen species (ROS) on the control of parasite loads and inflammation in Leishmania amazonensis infection. Parasit Vectors. 2016; 9:193. [DOI:10.1186/s13071-016-1472-y]
20. Pistoia V, Cocco C, Airoldi I. Interleukin-12 receptor β2: from cytokine receptor to gatekeeper gene in human B-cell malignancies. J Clin Oncol. 2009; 27(28):4809-16. [DOI:10.1200/JCO.2008.21.3579]
21. Sypek JP, Chung CL, Mayor SEHY, Subramanyam JM, Goldman SJ, Sieburth DS, et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med. 1993;177(6):1797-802. [DOI:10.1084/jem.177.6.1797]
22. Hwang JR, Byeon Y, Kim D, Park SG. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020; 52(5):750-61. [DOI:10.1038/s12276-020-0435-8]
23. Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022; 13:812774. [DOI:10.3389/fimmu.2022.812774]
24. Schreiber G, Walter MR. Cytokine receptor interactions as drug targets. Curr Opin Chem Biol. 2010;14(4):511-9. [DOI:10.1016/j.cbpa.2010.06.165]
25. Malard F, Holler E, Sandmaier BM, Huang H, Mohty M. Acute graft-versus-host disease. Nat Rev Dis Primers. 2023; 9(1):27. [DOI:10.1038/s41572-023-00438-1]
26. Lim MS, Elenitoba-Johnson KSJ. The molecular pathology of primary immunodeficiencies. J Mol Diagn. 2004; 6(2):59-83. [DOI:10.1016/S1525-1578(10)60493-X]
27. Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine‐regulated Th17 plasticity in human health and diseases. Immunology. 2021; 163(1):3-18. [DOI:10.1111/imm.13280]
28. Kinkel RP. Multiple Sclerosis Therapeutics. In: Rudick R, editor. Methylprednisolone. The United States: CRC Press. 1999. p. 365-86. [DOI:10.1201/9781439812242-37]
29. Puckett Y, Gabbar A, Bokhari AA. Prednisone. In: DtatPearls [Internet]. Treaure Island (FL): StatPearls Publishing; 2024.
30. Solbach W, Forberg K, Kammerer E, Bogdan C, Röllinghoff M. Suppressive effect of cyclosporin A on the development of Leishmania tropica-induced lesions in genetically susceptible BALB/c mice. J Immunol. 1986; 137(2):702-7. [DOI:10.4049/jimmunol.137.2.702]
31. Solgi G, Kariminia A, Abdi K, Darabi M, Ghareghozloo B. Effects of combined therapy with thalidomide and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice. Korean J Parasitol. 2006; 44(1):55-61. [DOI:10.3347/kjp.2006.44.1.55]
32. Brown A, Kumar S, Tchounwou PB. Cisplatin-based chemotherapy of human cancers. J Cancer Sci Ther. 2019; 11(4):97.
33. Akhtari J, Faridnia R, Kalani H, Bastani R, Fakhar M, Rezvan H, et al. Potent in vitro antileishmanial activity of a nanoformulation of cisplatin with carbon nanotubes against Leishmania major. J Glob Antimicrob Resist. 2019; 16:11-6. [DOI:10.1016/j.jgar.2018.09.004]
34. Casabianca A, Marchetti M, Zallio F, Feyles E, Concialdi E, Ferroglio E, et al. Seronegative visceral leishmaniasis with relapsing and fatal course following rituximab treatment. Infection. 2011; 39(4):375-8. [DOI:10.1007/s15010-011-0109-5]
35. Schwartz J, Moreno E, Calvo A, Blanco L, Fernández-Rubio C, Sanmartín C, et al. Combination of paromomycin plus human anti-TNF-α antibodies to control the local inflammatory response in BALB/mice with cutaneous leishmaniasis lesions. J Dermatol Sci. 2018; 92(1):78-88. [DOI:10.1016/j.jdermsci.2018.07.005]
36. Buie LW, Pecoraro JJ, Horvat TZ, Daley RJ. Blinatumomab: a first-in-class bispecific T-cell engager for precursor B-cell acute lymphoblastic leukemia. Ann Pharmacother. 2015; 49(9):1057-67. [DOI:10.1177/1060028015588555]
37. Akuffo H, Kaplan G, Kiessling R, Teklemariam S, Dietz M, McElrath J, et al. Administration of recombinant interleukin-2 reduces the local parasite load of patients with disseminated cutaneous leishmaniasis. J Infect Dis. 1990; 161(4):775-80. [DOI:10.1093/infdis/161.4.775]
38. Sosa N, Pascale JM, Jiménez AI, Norwood JA, Kreishman-Detrick M, Weina PJ, et al. Topical paromomycin for New World cutaneous leishmaniasis. PLoS Negl Trop Dis. 2019; 13(5):e0007253. [DOI:10.1371/journal.pntd.0007253]
39. Lai A Fat EJ, Vrede MA, Soetosenojo RM, Lai A Fat RF. Pentamidine, the drug of choice for the treatment of cutaneous leishmaniasis in Surinam. Int J Dermatol. 2002; 41(11):796-800. [DOI:10.1046/j.1365-4362.2002.01633.x]
40. Auttachoat W, Zheng JF, Chi RP, Meng A, Guo TL. Differential surface expression of CD18 and CD44 by neutrophils in bone marrow and spleen contributed to the neutrophilia in thalidomide-treated female B6C3F1 mice. Toxicol Appl Pharmaco. 2007; 218(3):227-37. [DOI:10.1016/j.taap.2006.11.019]
41. Lauritano D, Palmieri A, Lucchese A, Di Stasio D, Moreo G, Carinci F. Role of cyclosporine in gingival hyperplasia: An in vitro study on gingival fibroblasts. Int J Mol Sci. 2020; 21(2):595. [DOI:10.3390/ijms21020595]
42. Dall'Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004; 64(13):4664-9. [DOI:10.1158/0008-5472.CAN-03-2862]
43. Ternant D, Berkane Z, Picon L, Gouilleux-Gruart V, Colombel J-F, Allez M, et al. Assessment of the influence of inflammation and FCGR3A genotype on infliximab pharmacokinetics and time to relapse in patients with Crohn's disease. Clinical Parmacokinet. 2015; 54(5):551-62. [DOI:10.1007/s40262-014-0225-3]
44. Erbe AK, Wang W, Goldberg J, Gallenberger M, Kim K, Carmichael L, et al. FCGR polymorphisms influence response to IL2 in metastatic renal cell carcinoma. Clin Cancer Res. 2017; 23(9):2159-68. [DOI:10.1158/1078-0432.CCR-16-1874]
45. Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021; 40(1):184. [DOI:10.1186/s13046-021-01987-7]
46. Andrade DL, Jalalizadeh M, Salustiano ACC, Reis LO. Bladder cancer immunomodulatory effects of intravesical nitazoxanide, rapamycin, thalidomide and Bacillus Calmette-Guérin (BCG). World J Urol. 2023; 41(9):1375-80. [DOI:10.1007/s00345-023-04526-5]
47. Zhou WH, Dong L, Du MR, Zhu XY, Li DJ. Cyclosporin A improves murine pregnancy outcome in abortion-prone matings: involvement of CD80/86 and CD28/CTLA-4. Reproduction. 2008; 135(3):385-95. [DOI:10.1530/REP-07-0063]
48. Chauhan P, Sodhi A, Shrivastava A. Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929 cells. Immunobiology. 2009; 214(3):197-209. [DOI:10.1016/j.imbio.2008.07.012]
49. Bentley A, Hamid Q, Robinson D, Schotman E, Meng Q, Assoufi B, et al. Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med. 1996; 153(2):551-6. [DOI:10.1164/ajrccm.153.2.8564096]
50. Miljković Ž, Momčilović M, Miljković D, Mostarica-Stojković M. Methylprednisolone inhibits IFN-γ and IL-17 expression and production by cells infiltrating central nervous system in experimental autoimmune encephalomyelitis. J Neuroinflammation. 2009; 6:37. [DOI:10.1186/1742-2094-6-37]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb