Volume 28, Issue 1 (1-2024)                   IBJ 2024, 28(1): 15-22 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naseroleslami M, Mehrab Mohseni M. Simvastatin-Loaded Nanoniosome Protects H9c2 Cells from Oxygen-Glucose Deprivation/Reperfusion Injury by Downregulating Inflammation. IBJ 2024; 28 (1) :15-22
URL: http://ibj.pasteur.ac.ir/article-1-3994-en.html
Abstract:  
Background: Simvastatin (SIM) has anti-inflammatory and antioxidant properties against cardiac ischemia/reperfusion injury (I/RI). However, it suffers from low bioavailability and a short half-life. Nanoniosomes are novel drug delivery systems that may increase SIM effectiveness. The present research evaluates the impact of SIM-loaded nanoniosomes on the oxygen-glucose deprivation/reperfusion (OGD/R) injury model of H9c2 cells.
Methods: Cells were seeded based on five groups: (1) control; (2) OGD/R; (3) OGD/R receiving SIM; (4) OGD/R receiving nanoniosomes; and (5) OGD/R receiving SIM‑loaded nanoniosomes. OGD/R injury of the H9c2 cells was treated with SIM or SIM‑loaded nanoniosomes. Cell viability, two inflammatory factors, necroptosis factors, along with HMGB1 and Nrf2 gene expressions were assessed.
Results: The cells treated with SIM‑loaded nanoniosomes showed a significant elevation in the cell viability and a reduction in HMGB1, Nrf2, TNF-α, IL-1β, RIPK1, and ROCK1 expression levels compared to the OGD/R and SIM groups.
Conclusion: Based on our findings, nanoniosomes could safely serve as a drug delivery system to counterbalance the disadvantages of SIM, resulting in improved aqueous solubility and stability.

References
1. Safiri S, Karamzad N, Singh K, Carson-Chahhoud K, Adams C, Nejadghaderi SA, et al. Burden of ischemic heart disease and its attributable risk factors in 204 countries and territories, 1990-2019. Eur J Prev Cardiol. 2022; 29(2):420-31. [DOI:10.1093/eurjpc/zwab213]
2. Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of myocardial cell apoptosis is important mechanism for ginsenoside in the limitation of myocardial ischemia/reperfusion injury. Front Pharmacol. 2022; 13:806216. [DOI:10.3389/fphar.2022.806216]
3. He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (Review). Exp Ther Med. 2022; 23(6):430. [DOI:10.3892/etm.2022.11357]
4. Canney M, Gunning HM, Zheng Y, Rose C, Jauhal A, Hur SA, et al. The risk of cardiovascular events in individuals with primary glomerular diseases. Am J Kidney Dis. 2022; 80(6):740-50. [DOI:10.1053/j.ajkd.2022.04.005]
5. Kamiya M, Mizoguchi F, Yasuda S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J Cachexia Sarcopenia Muscle. 2022; 13(4):2118-31. [DOI:10.1002/jcsm.13025]
6. Adameova A, Horvath C, Abdul Ghani S, Varga ZV, Suleiman MS, Dhalla NS. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/ reperfusion injury: a focus on necroptosis. Biomedicines. 2022; 10(1):27. [DOI:10.3390/biomedicines10010127]
7. Lee MM, Sattar N, McMurray JJ, Packard CJ. Statins in the prevention and treatment of heart failure: a review of the evidence. Curr Atheroscler Rep. 2019; 21(10):41. [DOI:10.1007/s11883-019-0800-z]
8. Barter PJ, Brandrup Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J Lipid Res. 2010; 51(6):1546-53. [DOI:10.1194/jlr.P002816]
9. Korani S, Bahrami S, Korani M, Banach M, Johnston TP, Sahebkar A. Parenteral systems for statin delivery: a review. Lipids Health Dis. 2019; 18:193. [DOI:10.1186/s12944-019-1139-8]
10. Zhang XB, Cheng HJ, Yuan YT, Chen Y, Chen YY, Chiu KY, et al. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY). 2021; 13(14):18870-78. [DOI:10.18632/aging.203339]
11. Climent E, Benaiges D, Pedro Botet J. Hydrophilic or lipophilic statins? Front Cardiovasc Med. 2021; 8:687585. [DOI:10.3389/fcvm.2021.687585]
12. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez Torres MDP, Acosta Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018; 16:71. [DOI:10.1186/s12951-018-0392-8]
13. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019; 23:20. [DOI:10.1186/s40824-019-0166-x]
14. Naseroleslami M, Mousavi Niri N, Hosseinian SB, Aboutaleb N. DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism. Naunyn-Schmiedeberg's Arch Pharmacol. 2023; 396:2127-2136. [DOI:10.1007/s00210-023-02467-9]
15. Naseroleslami M, Niri NM, Akbarzade I, Sharifi M, Aboutaleb N. Simvastatin-loaded nanoniosomes confer cardioprotection against myocardial ischemia/ reperfusion injury. Drug Deliv Transl Res. 2022; 12(6):1423-32. [DOI:10.1007/s13346-021-01019-z]
16. Khan R, Irchhaiya R. Niosomes: a potential tool for novel drug delivery. J Pharm Investig. 2016; 46(3):195-204. [DOI:10.1007/s40005-016-0249-9]
17. Kheila M, Gorjipour F, Gohari LH, Sharifi M, Aboutaleb N. Human mesenchymal stem cells derived from amniotic membrane attenuate isoproterenol (ISO)-induced myocardial injury by targeting apoptosis. Med J Islam Repub Iran. 2021; 35:82. [DOI:10.47176/mjiri.35.82]
18. Qiao S, Zhao WJ, Li HQ, Ao GZ, An JZ, Wang C, et al. Necrostatin-1 analog DIMO exerts cardioprotective effect against ischemia reperfusion injury by suppressing necroptosis viaautophagic pathway in rats. Pharmacology. 2021; 106(3-4):189-201. [DOI:10.1159/000510864]
19. Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf). 2021; 231(2):e13541. [DOI:10.1111/apha.13541]
20. Dmitriev YV, Minasyan SM, Vasina LV, Demchenko EA, Galagudza MM. Effects of inhibitors of necroptosis and autophagy on morphofunctional characteristics of the myocardium during static cold storage of donor rat heart. Bull Exp Biol Med. 2015; 159(6):792-95. [DOI:10.1007/s10517-015-3078-3]
21. Raafat Ibrahim R, Shafik NM, El-Esawy RO, El-Sakaa MH, Arakeeb HM, El-Sharaby RM, et al. The emerging role of irisin in experimentally induced arthritis: a recent update involving HMGB1/MCP1/Chitotriosidase I-mediated necroptosis. Redox Rep. 2022; 27(1):21-31. [DOI:10.1080/13510002.2022.2031516]
22. Simpson J, Spann KM, Phipps S. MLKL regulates rapid cell death-independent HMGB1 release in RSV infected airway epithelial cells. Front Cell Dev Biol. 2022; 10:890389. [DOI:10.3389/fcell.2022.890389]
23. Varzaghani V, Sharifi M, Hajiaghaee R, Bagheri S, Momtaz S, Tarassoli Z, Razmi A. Propolis add-on therapy alleviates depressive symptoms; A randomized placebo-controlled clinical trial. Phytother Res. 2022; 36(3):1258-67. [DOI:10.1002/ptr.7380]
24. Nazarinia D, Sharifi M, Dolatshahi M, Maleki SN, Neishaboori AM, Aboutaleb N. Foxo1 and Wnt/β-catenin signaling pathway: molecular targets of human amniotic mesenchymal stem cells-derived conditioned medium (hamsc-CM) in protection against cerebral ischemia/reperfusion injury. J Chem Neuroanat. 2021; 112:101918. [DOI:10.1016/j.jchemneu.2021.101918]
25. Zhuo Y, Yuan R, Chen X, He J, Chen Y, Zhang C, et al. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med. 2021; 16(1):48. [DOI:10.1186/s13020-021-00458-7]
26. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci. 2018; 12:466. [DOI:10.3389/fnins.2018.00466]
27. Tavakoli R, Tabeshpour J, Asili J, Shakeri A, Sahebkar A. Cardioprotective effects of natural products via the Nrf2 signaling pathway. Curr Vasc Pharmacol. 2021; 19(5):525-41. [DOI:10.2174/1570161119999201103191242]
28. Zhang H, Chen H, Li J, Bian Y, Song Y, Li Z, He F, Liu S, Tsai Y. Hirudin protects against isoproternol-induced myocardial infraction by alleviating oxidative via an Nrf2 dependent manner. Int J Biol Macromol. 2020; 162:425-35. [DOI:10.1016/j.ijbiomac.2020.06.097]
29. Fukunaga N, Kawajiri H, Badiwala MV, Butany J, Li RK, Billia F, et al. Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. Am J Transplant. 2020; 20(5):1262-71. [DOI:10.1111/ajt.15724]
30. Ren J, Liu W, Li GC, Jin M, You ZX, Liu HG, et al. Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through mir-31/pkcepsilon pathway. Curr Med Sci. 2018; 38(3):405-12. [DOI:10.1007/s11596-018-1893-2]
31. Wang X, Chen J, Huang X. Rosuvastatin attenuates myocardial ischemia-reperfusion injury via upregulating mir-17-3p-mediated autophagy. Cell Reprogram. 2019; 21(6):323-30. [DOI:10.1089/cell.2018.0053]
32. Francisco, J. and D. P. Del Re. Inflammation in myocardial ischemia/reperfusion injury: underlying mechanisms and therapeutic potential. Antioxidants. 2023; 12(11):1944. [DOI:10.3390/antiox12111944]
33. Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res. 2022; 71(3):277-92. [DOI:10.1007/s00011-022-01546-6]
34. Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, et al. Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials(Basal). 2020; 10(6):1191. [DOI:10.3390/nano10061191]
35. Bei W, Jing L, Chen N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf B Biointerfaces. 2020; 185:110635. [DOI:10.1016/j.colsurfb.2019.110635]
36. Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N. Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study. Food Chem. 2021; 342:128342. [DOI:10.1016/j.foodchem.2020.128342]
37. Salem HF, Kharshoum RM, Abou-Taleb HA, Farouk HO, Zaki RM. Fabrication and appraisal of simvastatin via tailored niosomal nanovesicles for transdermal delivery enhancement: in vitro and in vivo assessment. Pharmaceutics. 2021; 13(2):138. [DOI:10.3390/pharmaceutics13020138]
38. Abou-Taleb HA, Khallaf RA, Abdel-Aleem JA. Intranasal niosomes of nefopam with improved bioavailability: Preparation, optimization, and in vivo evaluation. Drug Des Devel Ther. 2018; 12:3501-16. [DOI:10.2147/DDDT.S177746]
39. Kanaani L, Ebrahimifar M, Khiyavi AA, Mehrdiba T. Effects of cisplatin-loaded niosomal nanoparticleson BT-20 human breast carcinoma cells. Asian Pac J Cancer Prev. 2017; 18(2):365-68. [DOI:10.31557/apjcb.2017.2.2.27-29]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb