Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 113-119 | Back to browse issues page

PMID: 38562043
Ethics code: IR.SBMU.RETECH.REC.1397.478

XML Print

Background: Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI.
Methods: Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis.
Results: Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI.
Conclusion: Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Jiang Z, Guo M, Shi C, Wang H, Yao L, Liu L, et al. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience. 2015; 310:362-71. [DOI:10.1016/j.neuroscience.2015.09.058]
2. Mosini A, Calió M, Foresti M, Valeriano R, Garzon E, Mello L. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. Braz J Med Biol Res. 2020; 54(2):e10656. [DOI:10.1590/1414-431x202010656]
3. Eslami M, Sayyah M, Soleimani M, Alizadeh L, Hadjighassem M. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury. J Neuroimmunol. 2015; 289:143-51. [DOI:10.1016/j.jneuroim.2015.11.003]
4. Lolk K, Lange T, Elwert F, Dreier JW, Christensen JJE. Traumatic brain injury, stroke, and epilepsy: A mediation study in a Danish nationwide cohort. Epilerpsia. 2023; 64(3):718-27. [DOI:10.1111/epi.17497]
5. Lucke-Wold BP, Nguyen L, Turner RC, Logsdon AF, Chen YW, Smith KE, et al. Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. Seizure. 2015; 33:13-23. [DOI:10.1016/j.seizure.2015.10.002]
6. Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017; 14(1):1-17. [DOI:10.1186/s12974-016-0786-1]
7. Pease M, Mallela AN, Elmer J, Okonkwo DO, Shutter L, Barot N, et al. Association of posttraumatic epilepsy with long-term functional outcomes in individuals with severe traumatic brain injury. Neurology. 2023; 100(19):e1967-e75. [DOI:10.1212/WNL.0000000000207183]
8. Pitkänen A, Immonen R. Epilepsy related to traumatic brain injury. Neurotherapeutics. 2014; 11(2):286-96. [DOI:10.1007/s13311-014-0260-7]
9. Awasthi, H, Tota S, Hanif K, Nath C, Shukla R. Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci. 2010; 86(3-4):87-94. [DOI:10.1016/j.lfs.2009.11.007]
10. Dhir A. Curcumin in epilepsy disorders. Phytother Res. 2018; 32(10):1865-875. [DOI:10.1002/ptr.6125]
11. Agarwal NB, Jain S, Agarwal NK, Mediratta PK, Sharma KK. Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. Phytomedicine. 2011; 18(8-9):756-9. [DOI:10.1016/j.phymed.2010.11.007]
12. Hui-Yin Y, Ahmad N, Azmi N, Makmor-Bakry M. Curcumin: The molecular mechanisms of action in inflammation and cell death during kainate-induced epileptogenesis. Indian J Pharm Educ Res. 2018; 52(1):32-41. [DOI:10.5530/ijper.52.1.4]
13. Racine RJ. Modification of seizure activity by electrical stimulation: cortical areas. Electroencephalogr Clin Neurophysiol. 1975; 38(1):1-12. [DOI:10.1016/0013-4694(75)90204-7]
14. Radpour M, Choopani S, Pourbadie HG, Sayyah M. Activating toll-like receptor 4 after traumatic brain injury inhibits neuroinflammation and the accelerated development of seizures in rats. Exp Neurol. 2022; 357:114202. [DOI:10.1016/j.expneurol.2022.114202]
15. Cernak I. Animal models of head trauma. NeuroRx. 2005; 2(3):410-22. [DOI:10.1602/neurorx.2.3.410]
16. Hunt RF, Boychuk JA, Smith BN. Neural circuit mechanisms of post-traumatic epilepsy. Front Cell Neurosci. 2013; 7:89. [DOI:10.3389/fncel.2013.00089]
17. Di Sapia R, Moro F, Montanarella M, Iori V, Micotti E, Tolomeo D, et al. In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathol Commun. 2021; 9(1):1-15. [DOI:10.1186/s40478-021-01165-y]
18. Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M. The impact of curcumin and its modified formulations on Alzheimer's disease. J Cell Physiol. 2019; 234(10):16953-65. [DOI:10.1002/jcp.28411]
19. Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci. 2017; 9:233. [DOI:10.3389/fnagi.2017.00233]
20. Bertoncello KT, Aguiar GPS, Oliveira JV, Siebel AM. Micronization potentiates curcumin's anti-seizure effect and brings an important advance in epilepsy treatment. Sci Rep. 2018; 8(1):1-9. [DOI:10.1038/s41598-018-20897-x]
21. Park W, Amin AR, Chen ZG, Shin DM. New perspectives of curcumin in cancer prevention. Cancer Prev Res (Phila). 2013; 6(5):387-400. [DOI:10.1158/1940-6207.CAPR-12-0410]
22. Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011; 12(3):332-47. [DOI:10.2174/138945011794815356]
23. Eslami M, Alizadeh L, Morteza-Zadeh P, Sayyah M. The effect of Lipopolysaccharide (LPS) pretreatment on hippocampal apoptosis in traumatic rats. Neurol Res. 2020; 42(2):91-98. [DOI:10.1080/01616412.2019.1709139]
24. Sun L, Shan W, Yang H, Liu R, Wu J, Wang Q. The role of neuroinflammation in post-traumatic epilepsy. Front Neurol. 2021; 12:876. [DOI:10.3389/fneur.2021.646152]
25. Chmielewska N, Maciejak P, Osuch B, Kursa MB, Szyndler J. Pro-inflammatory cytokines, but not brain-and extracellular matrix-derived proteins, are increased in the plasma following electrically induced kindling of seizures. Pharmacol Rep. 2021; 73(2):506-15. [DOI:10.1007/s43440-020-00208-w]
26. Abdallah DM. Anticonvulsant potential of the peroxisome proliferator-activated receptor gamma agonist pioglitazone in pentylenetetrazole-induced acute seizures and kindling in mice. Brain Res. 2010; 1351:246-53. [DOI:10.1016/j.brainres.2010.06.034]
27. Fukuda M, Ito M, Yano Y, Takahashi H, Motoie R, Yano A, et al. Postnatal interleukin-1β administration after experimental prolonged febrile seizures enhances epileptogenesis in adulthood. Metab Brain Dis. 2015; 30(3):813-9. [DOI:10.1007/s11011-014-9648-7]
28. Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, et al. Cytokines and epilepsy. Seizure. 2011; 20(3):249-56. [DOI:10.1016/j.seizure.2010.12.005]
29. Noe F, Polascheck N, Frigerio F, Bankstahl M, Ravizza, T, Marchini S, et al. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis. 2013;59:183-93. [DOI:10.1016/j.nbd.2013.07.015]
30. Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70-82. [DOI:10.1016/j.neuropharm.2014.10.027]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.