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ABSTRACT 
 

Background: The majority of insecticides target sodium channels. The 
increasing emergence of resistance to the current insecticides has persuaded 
researchers to search for alternative compounds. Scorpion venom gland as a 
reservoir of peptides or proteins, which selectively target insect sodium 
channels. These proteins would be an appropriate source for finding new 
suitable anti-insect components.  
Methods: Transcriptome of venom gland of scorpion M. eupeus was 
obtained by RNA extraction and cDNA library synthesis. The obtained 
transcriptome was blasted against protein databases to find insect toxins 
against sodium channel based on the statistically significant similarity in 
sequence. Physicochemical properties of the identified protein were 
calculated using bioinformatics software. The 3D structure of this protein 
was determined using homology modeling, and the final structure was 
assessed by MD simulation.  
Results: The sodium channel blocker found in the transcriptome of M. 
eupeus venom gland was submitted to the GenBank under the name of 
meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the 
molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of 
meuNa10 revealed a conserved CS-alpha/beta domain stabilized by eight 
cysteine residues. The meuNa10 is a member of the 3FP superfamily 
consisting of three finger-like beta strands.  
Conclusion: This study identified meuNa10 as a small insect sodium channel-
interacting protein with some physicochemical properties, including stability 
and water-solubility, which make it a good candidate for further in vivo and 
in vitro experiments in order to develop a new bioinsecticide.  
DOI: 10.61186/ibj.3885 
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INTRODUCTION 

 

corpion venom is a rich source of biologically 

active molecules, including peptides, proteins, 

enzymes, amines, and nucleotides[1]. Toxic 

peptides and proteins (toxins) in the scorpion venom 

gland can modify the function of the ion channels 

(sodium, potassium, chloride, and calcium)[2,3]. 

Navs are integral transmembrane proteins that are 

widely distributed on the cell membranes of both 

invertebrates and vertebrates[4] and play a vital role in 

the depolarizing phase of the action potential in most 

excitable cells[5]. Due to crucial roles of Navs in 

membrane excitability, these proteins are targeted by 

many plants or animals neurotoxins for defense or 

predation[6]. Navs are also a great target for some 

insecticides, including DDT, oxadiazines[7], and 

synthetic pyrethroids[8]; however, some insect species 

are resistant to these pesticides. Considering the 

emergence of the increasing resistance to the 

conventional insecticides, it is important to find new 

natural components as alternative insecticides with less 

side effects[4,9]. 

Scorpion toxins specific for insect Navs have been 

considered as one of the most promising options for 

insecticide[10]. Some scorpion toxins influence the 

sodium channels of insects but have no effect on 

mammalian sodium channels[3]. Hence, they are 

appropriate candidates for anti-insect assay. Although 

the binding sites of different toxins on the sodium 

channels are variable, in some cases, simultaneous use 

of two toxins causes allosteric effects and increases the 

lethal effects of the insecticides. For instance, the 

affinity of the toxin batrachotoxin to Navs enhances in 

the presence of pyrethroid and DDT[11]. The effect of 

pyrethroid has also been reported to be amplified up to 

100 times when using with neurotoxins such as toxin II, 

a sea anemone toxin, and brevetoxin[12].  

Blockers or modifiers of insect sodium channels 

originated from scorpion venom are attractive 

candidates for the production and development of novel 

insecticides[13]. Given the importance of identifying new 

bioinsecticide, in this study, the transcriptome of the 

venom gland of M. eupeus was analyzed to find a new 

powerful insect toxin with an action on the insect Navs. 

After identifying the potent protein, its physicochemical 

characteristics and 3D structure were determined and 

discussed. 

 

 

 

 

 

 

MATERIALS AND METHODS 

 

Sample preparation, RNA extraction, and cDNA 

library synthesis 

Scorpion samples of M. eupeus were collected from 

deserts of Khuzestan Province, Ahvaz, Iran. The 

authenticity of the species was confirmed in the 

Laboratory of Toxicology Research Center, Ahvaz 

Jundishapur University of Medical Sciences. To extract 

RNA, venom glands of the confirmed scorpions were 

separated and collected in a Petri dish. RNA extraction 

and cDNA library synthesis were performed as reported 

previously[14]. cDNA sequences were obtained from 

Sanger sequencing and analyzed by ORF finder 

(https://www.ncbi.nlm.nih.gov/orffinder/) to find ORFs 

in non-redundant transcripts of scorpion venom proteins 

and peptides. 

 

Transcriptome analysis of the M. eupeus venom 

gland  

Transcriptome of the venom gland of M. eupeus was 

blasted against Uniprot (https://www.uniprot.org/blast) 

and NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

using Blastx and Blastp to identify a protein with the 

greatest similarity to anti-insect sodium channel toxins 

that previously identified from scorpion venom and its 

closely related species, including mite, spider, tick, 

termite, ant, fly, and wasp. The transcript with the 

highest identity (E-value < 10-3) to anti-insect sodium 

channel blockers in the protein databases was preserved 

and subjected to further analysis. 

 

Physicochemical properties and 3D structure 

determination of anti-insect protein  

The amino acid sequence alignment of the new 

identified protein with its similar sequences was created 

using the MUSCLE tool in MEGA11 software[15]. 

SignalP-6.0 (https://services.healthtech.dtu.dk/service. 

php?SignalP) was used to predict the potent signal 

peptide. Molecular weight, theoretical pI, half-life, 

instability index, GRAVY, and aliphatic index of the 

identified protein were determined by Protparam  

online server (https://web.expasy.org/protparam/). 

Water solubility of the protein was determined  

using the peptide property calculator online tool 

INNOVAGEN (http://www.innovagen.com/proteomics 

-tools). Conserved domains of the discovered protein 

were determined by searching the protein sequences 

against MOTIF search (https://www.genome.jp/tools/ 

motif/). The 3D structure of the protein was determined 

via homology   modeling    using    three   online    

servers:   
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Fig. 1. Amino acid sequence alignment of meuNa10 with the most similar scorpion proteins: BjT2 (GenBank ID: P24336), BmKITa 

(GenBank ID: Q9XY87), BmKITb (GenBank ID: Q95WX6), LqqIT2 (GenBank ID: P19855), Insect toxin 2-53 (GenBank ID: P68726). 

Signal peptides are represented with the thick black line. Red arrows indicate the conserved cysteine residues.  

 
 

I-TASSER (https://zhanggroup.org/I-TASSER/), 
SWISS-MODEL (https://swissmodel. expasy.org/), and 
PHYRE2 (http://www.sbg.bio.ic.ac.uk/~phyre2/ 
html/page.cgi?id=index). In order to evaluate the energy 
profile of the predicted structure, ProSA web server 
(https://prosa.services.came.sbg.ac.at/prosa.php) was 
utilized. This server uses Z-score for calculating the 
overall quality and measuring the deviation of total 
energy for the predicted protein structures[16]. More 
negative Z-score represents more valid structure[17]. A 
structural alignment was performed using Pymol 
molecular visualization tool (www.pymol.org) to 
compare structures obtained from different servers. 
Finally, the selected structure with more negative Z-
score was further refined by MD simulation using 
GROMACS package (v. 2021)[18] at a time step of 5 fs 
for 100 ns (50 million steps). MD simulation was carried 
out at constant temperature (310 K) and pressure (1 
atm). The MD output trajectories were analyzed to 
calculate RMSD to determine the stability of the 
structure, RMSF to assess the flexibility of residues, Rg 
to evaluate compactness and stability, SASA to measure 
exposure of the new identified protein to the solvent and 
examine the secondary structure[19]. The maintenance of 
the secondary structure during MD simulation was 
analyzed using the DSSP program (https://swift.cmbi. 
umcn.nl/gv/dssp/). Visualization analysis of all 3D 
structures and structural alignments were performed 
using Pymol. 

 

 

RESULTS 

 

Transcriptome analysis of M. eupeus and 

identification of the anti-insect protein 

Transcriptome analysis of M. eupeus using BLAST 

against the currently identified proteins deposited in 

Uniprot and NCBI databases revealed a potent anti-

insect sodium channel blocker protein, which named 

meuNa10 and deposited in the GenBank under the 

accession number of KU316194. A multiple sequence 

alignment containing the amino acids of meuNa10 and 

similar proteins was generated (Fig. 1). All the proteins 

similar to the meuNa10 were beta-insect depressant 

toxin collected from the venom of scorpion species. The 

name of all proteins and their accession numbers are 

indicated in the Figure 1. 

 

Physicochemical properties and characterization of 

meuNa10 

A 468-nucleotides cDNA encoded meuNa10. A signal 

peptide with a probability more than 0.9991 was 

predicted for the meuNa10 (Table 1). The cleavage site 

of the signal peptide was between amino acids numbers 

19 and 20 (Fig. 2). Accordingly, meuNa10 was 

composed of a 19-amino acid signal peptide and a 69-

amino acid mature protein. The mature protein of 

meuNa10 was a water-soluble protein with a molecular 

weight of 7721.77 g/mol and theoretical pI of 8.7. The 

half-life of 30 hours in mammalian reticulocytes, >20 

hours in yeast, and >10 hours in Escherichia coli were 

estimated for meuNa10. Due to the instability index of 

34.10 that calculated for the meuNa10, it was considered 

as a stable protein. An aliphatic index of 52.32 and a 

GRAVY of -0.69 were also determined for the 

meuNa10. Searching for the conserved domains 

revealed that the meuNa10 included of a main domain 

(Toxin_3) and three subdomains (Gamma_ 

thionin, Ole_e_6, and CFEM) inside the main domain 

(Fig. 3). 

 

 
 

Table 1. Parameters related to signal peptide prediction 

Protein 

type 

Signal peptide 

(Sec/SPI) 

Lipoprotein signal 

peptide 

TAT signal 

peptide (Tat/SPI) 

TAT Lipoprotein signal 

peptide (Tat/SPII) 

Pilin-like signal peptide 

(Sec/SPIII) 

likelihood 0.9991 0.0002 0.0002 0.0002 0.0002 
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Fig. 2. Cleavage site of the signal peptide of meuNa10. Green dashed line shows the cleavage site. 

 

 

Three-dimensional structure determination and MD 

simulation of meuNa10  

Tertiary structure of the meuNa10 obtained from three 

servers, along with the calculated Z-scores for all 

predicted models are illustrated in Figure 4. Z-score 

values of -6.47, -6.6, and -6.61 were measured for the 

models obtained from PHYRE2, I-TASSER, and 

SWISS-MODEL servers, respectively. All the Z-scores 

were within the acceptable area (-10 to 10), shown in 

Figure 4. However, the structure modeled by SWISS-

MODEL server had the high quality, considering the 

more negative Z-score (Fig. 4C). In all three servers, 

homology modeling was performed based on anti-insect 

neurotoxin, LqhIT2 from Leiurus quinquestriatus (PDB 

code: 2I61) as a template. The structure of the meuNa10 

is composed of a CS-alpha/beta domain, and an alpha-

helix connecting to a three-stranded beta sheet utilizing 

eight cysteine residues (Fig. 4C). CS-alpha/beta domain, 

is a common structural motif in some scorpion peptides 

and proteins. To precisely compare the three models, we 

performed a structural alignment for the models 

obtained from different servers (Fig. 5). According to 

the structural alignment, the three models were very 

similar. RMSD, RMSF, Rg, and SASA were calculated 

by the analysis of trajectories resulting from MD 

simulation (Fig. 6). Based on the RMSD plot, the 

structure of meuNa10 had a steady state from 20 to 60 

ns. After a fluctuation between 60 and 80 ns, it reached 

a steady state again (Fig. 6A). Overall, considering the 

RMSD value less than 0.5 nm for meuNa10, its structure 

showed low conformational changes during the 

simulation (Fig. 6A). RMSF was computed to determine 

the fluctuated residues of the meuNa10 during the MD 

simulation. As depicted in   the   RMSF plot (Fig. 6D), 

all residues had RMSF values less than 0.2 nm, 

indicating minor changes in meuNa10 structure. 

Furthermore, Rg plot (Fig. 6B)

 
 

 

 
Fig. 3. Conserved domains in the structure of meuNa10. 
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Fig. 4. Three-dimensional structure generated for meuNa10 using three different servers, including (A) PHYRE-2, (B) I-TASSER, 

and (C) SWISS-MODEL. Plots related to model validation using the Z-score calculation are given on the right. The black dots in the 

plot show the location of the predicted structures. Z-score of meuNa10 models obtained from all three servers are between -10 and 10. 

Protein structures were visualized and designed using PyMOL tool. 

(A) 
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 Fig. 5. Structural alignment of three models of meuNa10 from 

three different servers. The red, pink, and blue structures were 

obtained from I-TASSER, PHYRE-2, and SWISS-MODEL, 

respectively. 
 

 

represented stability and compactness of the meuNa10 

between 20 to 60 ns and after 80 ns. Analysis of the 

maintenance of the secondary structure using the DSSP 

program exhibited relative stability of the secondary 

structure of the meuNa10 model during the MD 

simulation (Fig. 6E and 6F).  
 

 

DISCUSSION 
 

 Resistance to conventional insecticides and pesticides 

is widespread. Hence, finding alternative compounds 

with less side effects is a major concern. Protein-based 

anti-insect components from venomous animals are 

great candidates for designing and developing new 

bioinsecticides. Herein, we identified and characterized 

a putative anti-insect protein (meuNa10) in the 

transcriptome of the M. eupeus venom gland.  

Protein solubility is important to protein chemists, the 

pharmaceutical industry, and all biologists who work 

with protein in solution. Chemical and pharmaceutical 

application of proteins require a very high concentration 

of protein samples[20]. Different water solubility has 

been found for proteins. Crambin has been reported as a 

completely water-insoluble[21], whereas the solubility 

more than 500 mg/mL has been determined for serum 

albumins[22]. Characterization of the meuNa10 has 

revealed that it is a water-soluble protein. Working with 

water soluble proteins creates some challenges, i.e., 

poor solubility of the proteins prevents the production of 

many industrial and useful therapeutic proteins[23]. 

Considering the high-water solubility identified for the 

meuNa10 herein, such above-mentioned problems will 

not be expected when working with this protein. 

Literature reviews show that the negative values of 

GRAVY for a protein indicates its hydrophilicity[24]. 

Accordingly, meuNa10 with a GRAVY value of -0.69 

is a hydrophilic protein. It has previously been revealed 

that for the rapid inactivation of the sodium channels, a 

hydrophobic protein is required[25]. Given the 

hydrophilic features predicted for meuNa10, it requires 

to increase the efficiency of meuNa10 to modulate the 

sodium channels by creating hydrophobicity-enhancing 

changes in amino acids. Previous studies have indicated 

that direct use of natural proteins as bioinsecticides is 

actually impossible. Multiple modifications on the 

newly found bioinsecticides are needed to provide an 

appropriate application in insect control. Increase in 

hydrophobicity, resistance to peptidase, being selective 

for organ action, and having agonistic or antagonistic 

activity are some important required changes[26]. Some 

insect proteins such as kinins[27], proctolin[28], 

sulphakinins[29], myo-suppressins[30], allatostatins[31], 

and tachykinins[32] are analogues of different natural 

proteins synthesized after some modifications,which 

make them suitable for using as insecticides. 

The aliphatic index of neurotoxins originated from the 

scorpion was found to be 30.33 to 54.26[24]. Similarly, 

we reported an aliphatic index of 52.32 for the 

meuNa10. Since the origin of meuNa10 is a scorpion, 

the predicted value of aliphatic index for the meuNa10 

seems reasonable. Notably, the instability index 

measures the stability of proteins in the experimental 

conditions. In this study, the instability index was less 

than 40, indicating that the protein is stable[33]. The 

value of the instability index obtained for the meuNa10 

was 34.1, which verifies that the meuNa10 is a stable 

protein. However, a recent study comparing the 

instability index of proteins in vivo and in vitro, has 

stated that protein stability depends on not only its 

intrinsic nature but also its surrounding conditions. 

Therefore, determination of the instability index alone 

may not be a definitive indication for the stability of a 

protein[34]. However, it is suggested that this index can 

give a preliminary view of the target protein. Hence, 

further experimental research is needed to confirm the 

stability of meuNa10. 

The Toxin_3 family is a domain found in the scorpion 

toxins and plant defensins[35,36]. It has already been 

established that the scorpion toxins containing Toxin_3 

family target sodium channels and inhibit the activation 

of these channels. AaHIT, a toxin identified in the 

venom gland of  scorpion Androctonus australis, which 

affects the insect’s NavS is composed of the domain 

Toxin_3 family[37]. Since meuNa10 contains a Toxin_3 

family domain (Fig. 3), it likely has the sodium channel 

inhibitory activity. 
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 Fig. 6. MD simulation analysis of meuNa10 model during 100 ns. (A) RMSD plot of backbone Cα atoms of meuNa10, showing the 

steady state of the model from 20 to 60 ns and after 80 ns; (B) Rg plot, indicating stability and compactness of meuNa10 from 20 to 60 

ns and after 80 ns; (C) SASA plot, representing solvent accessible area around 45 nm2 in most of the time during the simulation; (D) 

RMSF plot, revealing the flexibility of all residues below 0.2 nm; (E) and (F) plots of time-dependent evaluation of the secondary 

structure changes of meuNa10 during the simulation, indicating that all secondary structure types were stable during simulation. 

 

 
 

The tertiary structure of meuNa10 represents the 

conserved CS-alpha/beta domain consisting of one 

alpha-helix and a three-stranded beta sheet, which are 

held together by three disulfide bridges (Fig. 4C). CS-

alpha/beta domain is commonly found in scorpion 

peptides and proteins[38]. As the meuNa10 originates 

from scorpion, the presence of such a conserved motif 

can be justified. MD simulation results verify the 

predicted structure for meuNa10. On the other hand, 

beta finger-like strands of meuNa10, which are clearly 

visible in Figure 4C, can classify this protein in 3FP 

superfamily[39]. The 3FP superfamily contains small 

proteins, which typically consists of 60 to 80 amino acid 

residues. The protein members of this superfamily have 

a common tertiary structure, including three long finger-

like beta strands that stabilized by disulfide bonds[39]. 

The proteins belong to the 3FP superfamily are 

nonenzymatic and have been well identified and 

explained in the venom gland of snakes[40]. However, a 

significant number of proteins have not yet been 

introduced in the scorpions. The meuNa10 identified in 

this study is one of the first 3FP proteins reported in the 

scorpions. 

(A) (B) 

  

 
 

 

 

(C) (D) 

(E)                                                            (F) 
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The present analysis of the transcriptome of the M. 

eupeus venom gland led to the identification of 

meuNa10 protein. Calculation of the physicochemical 

properties, as well as the structural analysis of this 

protein, revealed that meuNa10 is a potent, stable and 

water-soluble protein with a conserved motif in its 

structure with the ability to affect the function of insect 

sodium channels. Accordingly, it is an appropriate 

candidate for producing new bioinsecticides. However, 

more in vivo and in vitro studies are needed to approve 

the function of this protein and more investigate the 

activity of meuNa10.    
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