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ABSTRACT 
 

Despite the unconditional success achieved in the treatment and prevention 
of AMI over the past 40 years, mortality in this disease remains high. Hence, 
it is necessary to develop novel drugs with mechanism of action different 
from those currently used in clinical practices. Studying the molecular 
mechanisms involved in the cardioprotective effect of adapting to cold could 
contribute to the development of drugs that increase cardiac tolerance to 
the impact of ischemia/reperfusion. An analysis of the published data shows 
that the long-term human stay in the Far North contributes to the occurrence 
of cardiovascular diseases. At the same time, chronic and continuous 
exposure to cold increases tolerance of the rat heart to ischemia/ 
reperfusion. It has been demonstrated that the cardioprotective effect of 
cold adaptation depends on the activation of ROS production, stimulation of 
the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP 
channel. DOI: 10.61186/ibj.3872 
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INTRODUCTION 

 
ospital mortality in patients with STEMI is 

4.6%-7.5% , which has not decreased in recent 

years[1-4]. Moreover, drugs that have been 

approved for clinical use and are capable of preventing 

reperfusion injury of the heart with high efficacy are not 

currently available[5,6]. During recent years, the attention 

of investigators has greatly been drawn to the study of 

 

the molecular mechanisms of the cardioprotective effect 

of pre- and post-conditioning, believing that this 

knowledge contributes to the development of drugs that 

increase cardiac tolerance to reperfusion injury[7]. The 

study of the trigger and molecular mechanisms 

underlying the infarct-reducing effect of cold adaptation 

can contribute to the identification of molecular targets 

for developing novel cardioprotective drugs. 
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INFORMATION SOURCES 

The National Library of Medicine’s PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) was searched to 

acquire information on the subject of the article. About 

3000 abstracts were studied, and 1200 full-text articles 

on cold adaptation and cold exposure were identified. 

Also, 62 articles were found in Russian on cold 

adaptation and exposure in Russian libraries. The 

duration of searching was about six months (from April 

2022 to October 2022), and a total number of 172 papers 

were included in this review.  
 

COLD AND HUMAN 

Effect of cold environment on the state of the 

cardiovascular system in the Far North population 
The health of people who came to work in Norilsk and 

Dikson, cities located above the Arctic Circle, was 

investigated in an earlier study[8]. In 1964, it was 

documented that healthy residents of Norilsk had higher 

BP than those living in Central Asia[9]. A persistent BP 

increase has been also observed in migrants living in the 

Far North. However, arterial hypertension was much 

less common in the indigenous population of the 

northern regions of Russia[10]. The incidence of 

hypertension among migrants in the Far North raises 

with increasing the length of residence in the Arctic 

area, reaching 61% in people living in this region for 

more than 15 years[11]. Moreover, a higher prevalence of 

hypertension was observed among the shift workers 

than the rest of the Russian population[12]. In addition, 

an increase in the incidence of AMI cases and the 

mortality rate from CVD was found among the 

newcomer population of the Far North, while in the 

indigenous inhabitants of this region who lead a 

traditional lifestyle, AMI was relatively rare[10]. The 

incidence of CHD in people aged 50-59 years living in 

the Arctic for less than 10 years was reported as 25%, 

but this rate increased to 45% for those who had been 

living in the Far North for more than 10 years (p < 

0.001). Therefore, long-term residence in the Arctic is 

considered a risk factor for the occurrence of CHD[8]. At 

the same time, the incidence of CHD was lower among 

the indigenous population, leading a traditional lifestyle, 

than those residents of the middle latitudes of the Union 

of Soviet Socialist Republics[8]. According to 

Turchinskiǐ, aboriginals of the Arctic who have 

preserved the traditions and lifestyle of their ancestors, 

practically experienced no hypertension[8]. However, 

Yakuts living in the city of Yakutsk in the Arctic region 

had a high incidence of CHD and hypertension[13]. The 

incidence of AMI among migrants arriving in the Far 

North increased sharply after 7 to 10 years[8]. In Norilsk, 

24% of AMI patients are comprised of young people 

aged less than 44 years old[14]. Mortality from CVD 

among the male population of Yakutsk aged 20-54 years 

is 38.4% of the total mortality[15], which is significantly 

higher than the rate reported in South/Middle Russia[16]. 

Atherosclerotic lesion of the aorta and atherosclerosis of 

the coronary arteries in Yakutsk are more common in 

the newcomers than in the indigenous population[15]. 

The incidence of CVD in the Siberian Federal District, 

compared to Russia, is also higher as a whole[17]. 

Melnikov[18] found that in Novosibirsk (a Southern 

Siberian city), the average age of individuals who died 

from CVD was 59 years old, and among the inhabitants 

of Mirny (Yakutia, Russia) and Yakutsk, this indicator 

was 52 and 55 years, respectively. Danish researchers 

have shown that CVD mortality among the Greenland 

population is two times higher than that of Danish 

people[19].  

 

Seasonal variations in morbidity and mortality of 

patients with CVD  
Approximately 10% more cases of AMI were 

observed in winter or spring than in summer in 

Virginia[20], and approximately 53% more AMI cases 

were reported in winter than in the summer in 

Massachusetts[21]. There was a negative correlation 

between hospital admissions of patients with acute 

coronary syndrome and mean daily temperature in 

Athens (Greece)[22]. In Hungary, a peak period of the 

incidence of AMI was found during spring[23], while the 

minimum number of events was recorded during 

summer. This pattern was also identified in Germany, 

London (UK), Yekaterinburg (Russia), Northern 

Ireland, and Finland[24-28]. According to Barnett et al., in 

cold periods, the rate of coronary event increases more 

in populations living in warm climates than those living 

in cold climates[29]. High ambient temperatures can also 

increase mortality from CVD (Fig. 1)[30]. Increased AMI 

morbidity and mortality during the cold season are 

associated with the activation of the adrenergic 

system[31], an elevation in blood viscosity, and an 

enhancement in platelet aggregation (Fig. 2)[32]. 

 

Effects of cold on the cardiovascular system 

Adverse effects of cold adaptation on the 

cardiovascular system  

One of the main negative effects of cold adaptation is 

hypertension. BP increases after prolonged exposure to 

cold in animals[33,34] and in humans (Fig. 2)[17,35]. In 

animals, when adapting to cold (1-4 ºC), cardiac 

hypertrophy develops[34]. There are also data on cardiac 

hypertrophy in humans during chronic cold exposure[35]. 

It has been observed that left ventricular hypertrophy 

develops after continuous cold exposure (4 °C; 4 weeks) 

without a change in the right ventricle weight[34]. 

Similarly, intermittent cold exposure (4 °C; 1.5 or 8 h 

daily; 4 weeks) did not induce cardiac hypertrophy[34]. 
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Fig. 1. Reasons behind the increased AMI in cold and warm conditions. 

 

 

Our data coincide with those of a research group in 

USA[36-38]. They found that long-term cold exposure (5 

± 2 ºC; 8 weeks) induced an increase in the left 

ventricular weight without alterations in the right 

ventricular weight. In addition, cardiac hypertrophy was 

reversible and disappeared four weeks after the 

cessation of cold exposure. Importantly, mild cold 

adaptation (8 ± 1 ºC; 5 weeks) did not affect the weight 

of the left ventricle[39]. All the above data clearly show 

that the adverse effects of cold adaptation depend on its 

severity, and thus the ambient temperature for 

adaptation should carefully be taken into account.  

 

Role of aldosterone, angiotensin-II, and endothelins in 

the adverse effects of cold adaptation 

It has been documented that aldosterone, angiotensin-

II, and endothelins play an important role in  

the development of hypertension. Moreover, they  

can be involved in the development of cardiac 

hypertrophy[40-45]. It has also been reported that a 17-day 

ski trip in the Far North at temperature ranging from -30 

to -40 °C causes a two-fold elevation in the  

plasma aldosterone concentration[46]. However, some 

investigators were unable to detect an increase in the 

plasma aldosterone concentration in the rats following 

cold exposure (5 °C; 3 weeks)[38] and cold adaptation (4 

°C; 14 days)[47], though the plasma aldosterone level 

increased after seven days of cold exposure (4 °C)[47]. 

Repeated cold water immersions (three times a week for 

six weeks) did not alter the plasma aldosterone 

concentration in male swimmers in winter[48], which is 

likely due to the fact that the exposure was not intense 

enough to induce an increase in the plasma aldosterone 

level. Repeated cold exposure (4 °C; 1 h daily; 19 days) 

induced an increase in plasma aldosterone concentration 

in rats[49]. Cold exposure (5 ± 2 °C; 4 weeks) also 

induced hypertension and cardiac hypertrophy in rats. 

Daily administration of spironolactone prevented the 

development of hypertension, but not cardiac 

hypertrophy[50]. Adenoviral delivery of renin antisense 

inhibited the development of hypertension after 

adaptation to cold (6.7 ± 2 °C; 1, 3, and 5 weeks) in 

rats[51]. The recombinant adeno-associated virus 

carrying short-hairpin small-interference RNA for the 

mineralocorticoid receptor was administered to mice 

during cold exposure (6.7 °C; 32 days)[33]. This 

adenoviral construct prevented a cold-induced increase 

in   BP.  The  mentioned   data   indicate  that  aldosterone 
 

 

 
 

Fig. 2. Blood circulation and heart and responses to cold exposure. 

Cases of AMI                                                  Cases of AMI 
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is involved in the development of cold-induced 
hypertension, but not cardiac hypertrophy. In 1993, 
Cassis found that cold exposure (4 °C; 7 days) had no 
effect on the plasma angiotensin II level in rats[52], but 
later in 1998, he and his colleagues discovered that cold 
exposure (4 °C; 7 days) led to an increase in the plasma 
concentration of angiotensin II in these animals[53]. 
Shechtman et al. also demonstrated that treatment with 
captopril could prevent cold-induced hypertension (5 ± 
2 °C; 4 weeks) in rats, whereas it has no effect on cardiac 
hypertrophy[54]. Treatment with the AT1 receptor 
antagonist losartan was found to prevent cold-induced 
hypertension (5 ± 2 °C, 3 weeks) in rats but did  not 
abolish the development of cardiac hypertrophy[55]. 
Pressor response to a bolus injection of angiotensin-II 
increased in cold-adapted rats (5 ± 2 °C; 3 and 4 
weeks)[56]. These data were confirmed by other 
investigators who found that cold adaptation enhanced 
the responsiveness of tail arteries to angiotensin II in 
rats[57]. It was shown that cold exposure (5 °C; 5 weeks) 
did not increase BP in angiotensinogen gene-knockout 
mice[58]. The above-mentioned evidence convincingly 
shows that angiotensin-II is involved in the development 
of cold-induced hypertension through the activation of 
the AT1 receptor. ET-1 is a potent vasoconstrictor. It 
was demonstrated that cold exposure (6.7 ± 2 °C; 1, 3, 
and 5 weeks) increased BP and also ET-1 level in the 

heart and mesenteric arteries in rats[59]. However, 
investigators did not find any alteration in the 
concentration of ET-1 in plasma. In a study performed 
by Chen et al., cold exposure doubled the expression of 
ETA receptor protein, while the expression of the ETB 
receptor decreased by 90%, in the heart of cold-exposed 
rats. Cold exposure also increased the ETA/ETB receptor 
ratio in the heart by about 60-fold[59]. In another 
investigation by Zhang et al., wild-type and ETA 
receptor knockout mice were exposed to cold (4 °C) for 
2 and 5 weeks. They found that cold adaptation induced 
severe cardiac fibrosis in wild-type mice, and ETA 
receptor knockout abolished these negative 
manifestations of cold adaptation[60]. Consequently, 
endogenous ET-1 could be involved in cardiac fibrosis 
through the activation of ETA receptors. Endogenous 
catecholamines do not seem to play a role in the 
development of cold-induced hypertension, as pressor 
response to a bolus injection of the α-AR agonist 
phenylephrine decreased in cold-adapted rats (5 ± 2 °C; 
3 and 4 weeks)[56]. Chronic treatment with the α-AR 
antagonist prazosin had no effect on the development  
of cold-induced hypertension in rats (5 ± 2 °C; 3 and  
4 weeks)[61]. As a result, endogenous catecholamines are 
not involved in cold-induced hypertension. It is possible 
that the activation of the ETA receptor causes 
hypertension and cardiac hypertrophy after long-term 
cold exposure (Fig. 3). 

Cardioprotective effect of cold adaptation  
Short-term cold exposure contributes to an increase in 

the level of catecholamines and is associated with an 

increase in oxygen demand in humans[36,62]. In addition, 

prolonged (seven weeks) cold exposure causes a rise in 

oxygen consumption in mice[63]. Therefore, it could be 

hypothesized that adaptation to cold would cause a 

decrease in cardiac tolerance to IRI. However, we found 

that continuous cold adaptation (4 °C; 4 weeks) 

increases the rat heart’s tolerance to ischemia (45 min) 

and reperfusion (2 h)[34,64]. Our data also indicated that 

intermittent cold adaptation (4 °C, 8 h/day, 4 weeks) or 

intermittent cold exposure (4 °C, 1.5 h/day, 4 weeks) 

had no effect on cardiac tolerance to IRI[34]. A Czech 

research group found that chronic cold exposure (8 °C, 

8 h/day for a week, followed by 4 weeks at 8 °C for 24 

h/day) augments cardiac tolerance to ischemia (20 min) 

and reperfusion (3 h), and this effect persists for at least 

14 days[39]. A Russian research group found that the 

infarct-limiting effect of cold adaptation is not 

associated with serum cortisol, corticosterone, T3, and 

T4 levels[34]. Cold exposure did not affect the appearance 

of peptic ulcers in the stomach or the involution of the 

thymus and spleen[34]. Continuous cold exposure 

induced a 40% increase in adrenal gland hypertrophy. 

Therefore, chronic cold exposure is not considered a 

form of stress. Both continuous and intermittent cold 

exposure cause an increase in brown fat weight, heart 

weight, and left ventricle weight, which are typical 

alterations for cold adaptation[65,66]. Tibenska et al. 

observed that the infarct-reducing effect of adaptation to 

cold is not accompanied by β1-AR expression, PKA, the 

p-PKA level, and adenylyl cyclase activity[39]. 

Simultaneously, they found that cold adaptation 

increased the tolerance of cardiac mitochondria to Ca2+ 

overload, which may indicate the important role of the 

permeability transition pore (MPT pore) in the 

cardioprotective effect of cold adaptation[39]. There is 

evidence that chronic cold exposure (4 °C; 4 weeks) had 

no effect on the level of autophagy markers (p62, LC3II, 

and LC3I) in myocardial tissue of sham-operated 

mice[67]. However, the levels of these markers were 

altered in mice with abdominal aortic constriction after 

cold adaptation, indicating an enhancement of 

autophagy. It can be assumed that autophagy is involved 

in the cardioprotective effect of cold adaptation. 

Jankovic and colleagues found that cardiac tolerance to 

IRI increased with adaptation to hypoxia[68], and the 

specificity of cold adaptation was an increase in oxygen 

consumption[69,70]. In cold-adapted mice, oxygen 

consumption remains increased at room temperature  

(20 °C)[71]. However, it should be noted that cold 

exposure (4 °C; 10 days) does not affect heart’s  

oxygen   consumption[72].  Hypoxia-inducible  factor-1α   
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Fig. 3. Potential signaling pathways of cardiac tolerance to IRI during cold adaptation. 

 

 

decreased in brown adipose tissue of rats after chronic 

cold exposure (4 ± 1 °C) for 12, 21, and 45 days[73], but 

not in white adipose tissue of rats after cold adaptation 

(4 ± 1°C, for 3, 7, 12, 21, and 45 days)[68]. Consequently, 

the molecular mechanism of the cardioprotective effect 

of cold adaptation must be different from the molecular 

mechanism of adaptation to hypoxia. Thus, the receptor 

and signaling mechanism of the infarct-reducing effect 

of cold adaptation have been still remained unclear. It is 

not known how cold adaptation affects cardiac 

contractility during reperfusion and influences 

programmed cell death during reperfusion (apoptosis, 

necroptosis, pyroptosis, and ferroptosis). We assume 

that the same receptors and signaling mechanisms 

involving in conditioning mediate the protective effect 

of cold adaptation[74,75-77].  

 

Role of catecholamines in the cardioprotective effect 

of cold adaptation 

Catecholamines and adrenergic receptors play an 

important role in cold adaptation[39,78]. Preliminary 

stimulation of β-AR increases cardiac tolerance to IRI 

(Fig. 3)[39,79], and the cardioprotective effect of ischemic 

preconditioning is associated with the activation of the 

α1-AR[80]. It has been also shown that the release of 

endogenous catecholamines by tyramine prior to CAO 

increases cardiac resistance to IRI[81], and α1-AR 

stimulation mimics the cardioprotective effect of 

ischemic preconditioning[82]. The cardioprotective and 

antiarrhythmic effects of the α1-AR agonists are 

mediated via Gi/o-proteins and associated with the 

activation of PKC and opening of mitoKATP
[82-84]. In 

addition, the cardioprotective effect of the β-AR agonist 

isoproterenol is mediated via the activation of PKC-δ[85]. 

The infarct-reducing effect of isoproterenol has been 

indicated to be dependent on the stimulation of β1-

AR[85]. However, there is evidence that the β1-AR 

agonist denopamine, the β1-, β2-AR agonist 

isoproterenol, and the β2-AR agonist formoterol 

decrease infarct size and improve cardiac contractility 

during reperfusion[86]. The antioxidant N-acetylcysteine 

eliminates the infarct-sparing effect of isoproterenol, but 

the mitoKATP channel blocker 5-hydroxydecanoate does 

not affect the cardioprotective effect of isoproterenol. 

These facts suggest that ROS are involved in the 

development of the cardioprotective effect of 

isoproterenol[86]. The above-mentioned studies indicate 

that the activation of α1-AR, β1-AR, and β2-AR can 

increase cardiac tolerance to IRI. Since endogenous 

catecholamines are involved in the development of cold 
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adaptation, it can be hypothesized that they also 

contribute to the development of the cardioprotective 

effect of cold adaptation. Tibenská and colleagues found 

that the infarct-reducing effect of cold adaptation does 

not depend on β1-AR expression. However, it is 

probable that other ARs can be involved in the 

cardioprotective effect of cold adaptation. The same 

research group also demonstrated that the persisting 

infarct-limiting effect of chronic cold adaptation 

mediates via β2-AR stimulation[87].  

 
Role of thyroid hormones in the cardioprotective effect 

of cold adaptation 

Thyroid hormones play a role in the cardioprotective 

effect of adapting to cold[66] and stimulate TRs: TRα and 

TRβ[88]. Data on the role of thyroid hormones in 

regulating cardiac tolerance to IRI are contradictory. It 

has been reported that thyrotoxicosis does not affect 

cardiac resistance to IRI, and hypothyroidism promotes 

a decrease in infarct size in rats[89]. In a study by Jeddi 

et al., the isolated hearts from hypothyroid rats were 

subjected to 30 minutes of global ischemia, followed by 

120 minutes of reperfusion[90]. They results showed that 

hypothyroid rats’s hearts were resistant to IRI. In Suarez 

et al.’s study, hypothyroidism contributed to a decrease 

in infarct size and reduced the release of lactate 

dehydrogenase and creatine kinase from the isolated 

heart. However, it was demonstrated that 

overexpression of endothelial TRα1 contributes to a 

45% decrease in infarct size in mice[91]. In another study, 

pretreatment with thyroxine (25 μg/100 g/day 

subcutaneously) for two weeks increased the tolerance 

of the isolated rat heart to IRI[92]. Moreover, 3,5-

Diiodothyropropionic acid, a T3 analog that binds to 

the TRα and TRβ, reduced infarct size and attenuated 

inflammatory cardiac injury after permanent CAO in 

mice[93]. In an investigation conducted on the isolated 

perfused rat heart subjected to IRI, T3 reduced infarct 

size[94]. The inconsistent data on the role of TRs in 

regulating cardiac tolerance to IRI seems to be linked to 

the presence of two TR (TRα and TRβ) subtypes. It is 

possible that the activation of one receptor enhances 

cardiac resistance to IRI, but stimulation of another TR 

aggravates IRI cardiac injury. In this regard, the 

selective TRα and TRβ antagonists could clarify the 

situation. Since thyroid hormones play an important role 

in cold adaptation, it can be assumed that they are 

involved in the infarct-reducing effect of adaptation 

(Fig. 3). 

 

Role of ROS in the cardioprotective effect of cold 

adaptation  

It is well known that ROS are involved in the 

cardioprotective effect of ischemic pre- and post-

conditioning[95]. In a previous study, cold exposure 

(5°C; 1.5 h; 28 days) had no effect on the diene 

conjugates and MDA levels in the myocardium of rats. 

Moreover, catalase and superoxide dismutase activity 

increased in cardiac tissue of rats[96]. In another study, 

rats were subjected to cold exposure (5 °C; 5, 10, 15, 

and 49 days). The results demonstrated that cold 

exposure had no effect on the MDA level in myocardial 

tissue, and chronic cold exposure (4 °C; 4 weeks) had 

no effect on ROS generation in the myocardial tissue of 

sham-operated mice[67]. Other investigators have shown 

that cold adaptation (4 °C; 6 h during 14 days) leads to 

the increased ROS production in myocardial tissue of 

rats[97], and cold-weather field training increases the 

serum lipid hydroperoxides level in human[98]. In 

Schmidt et al.’s study, cold adaptation (4 °C; 6 months) 

promoted an increase in glutathione peroxidase activity 

in the rat heart without affecting glutathione reductase 

activity[99]. Selman et al. found that cold exposure  

(8 °C; 18 days) increased catalase activity in myocardial 

tissue of small mammals (Microtus agrestis) without 

altering superoxide dismutase activity[100]. Emirbekov et 

al. observed that cold adaptation (-5 °C; 3 h; during 20–

25 days) decreased the MDA level in the myocardium 

and increased total antioxidant activity in the 

myocardial tissue of rats[101]. We found that a free 

radical scavenger, N-2-mercaptopropionylglycine, 

abolished the infarct-reducing effect of cold adaptation 

[unpublished data]. Thus, there is currently no 

convincing evidence that cold adaptation enhances or 

inhibits ROS production in animals without I/R cardiac 

injury or in animals with CAO and reperfusion.  

 

Role of FGF, TNF-α, M-cholinergic, TRPV1, 

vasopressin, ghrelin, adenosine, and opioid receptors 

in the cardioprotective effect of cold adaptation  

FGF is involved in the cardioprotective effect of 

ischemic pre- and post-conditioning[74]. Cold adaptation 

(4 °C; 15 days) induced an increase in the plasma FGF21 

level in mice[102]; however, some investigators believe 

that cold adaptation (6 °C; 7 days) decreases the plasma 

FGF21 level in mice. Thus, the question of the 

involvement of FGF in the infarct-reducing effect of 

cold adaptation remains open. It has been reported that 

TNF-α is involved in the cardioprotective effect of 

adaptation to hypoxia[103]. There are two TNF-α 

receptors: TNF-α receptors I (TNFR-I, p55) and II 

(TNFR-II, p75)[104]. The activation of TNFR-I 

aggravates IRI[104], while the stimulation of TNFR-II 

enhances cardiac tolerance to IRI[103]. Cold adaptation 

(4 °C; 15 days) induced an increase in the plasma TNF-

α concentration in mice[102]. Therefore, it is possible that 

TNF-α has involvement role in the cardioprotective 

effect of cold adaptation. It is known that α7nAChR is 
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responsible for the cardioprotective effect of remote 

postconditioning[105], and the muscarinic receptor has a 

participation in the infarct-reducing effect of remote 

preconditioning[106]. Therefore, it can be assumed that 

these receptors are involved in the cardioprotective 

effect of cold adaptation. In a study by Manukhin et al., 

rabbits were exposed daily to severe cold condition  

(-10 °C; 6 h; 1-30 days), in which an increased 

sensitivity of blood vessels to acetylcholine was found. 

The authors suggested that cold adaptation can alter the 

characteristics of M-cholinergic receptors of blood 

vessels[107]. In this case, the cardioprotective effect of 

cold adaptation could be mediated via the activation of 

M-cholinergic receptors. Gorbunov and colleagues 

observed the involvement of the TRPV1 channel in the 

regulation of cardiac resistance to IRI. They have also 

observed that the TRPV1 activation increases cardiac 

tolerance to IRI due to calcitonin gene-related peptide 

release from afferent nerve endings[108]. It has been 

shown that chronic cold exposure (4 °C; 4 weeks) 

upregulates TRPV1 in the myocardial tissue of mice[67]. 

However, there are data that cold exposure (4 °C; 5 

weeks) downregulates TRPV1 in the murine heart[60]. 

Consequently, the role of TRPV1 in the infarct-reducing 

effect of cold adaptation requires further study. 

Pretreatment with vasopressin has been demonstrated to 

decrease infarct size in rats[109], while chronic cold 

exposure has been found to increase the plasma level of 

vasopressin in guinea-pigs[110]. Therefore, vasopressin 

could be involved in the cardioprotective effect of cold 

adaptation. There is evidence that an uncharacterized 

pertussis toxin-insensitive receptor localized in guinea 

pig cardiomyocytes could play a role in cold 

adaptation[111]. This receptor, which is expressed in 

myocardial tissue, could be the PPARγ[112]. The 

activation of PPARγ enhances cardiac tolerance to 

IRI[113]. It has been demonstrated that cold exposure (4 

± 1 °C for 1, 3, 7, 12, 21, and 45 days) increases PPARγ 

expression in the skeletal muscle of rats[114]. If an 

increase in PPARγ expression is observed in myocardial 

tissue, this will enhance cardiac tolerance to IRI, 

suggesting the involvement of α7nAChR. In this regard, 

FGF, TNF-α, M-cholinergic, and PPARγ receptors are 

found to be involved in the cardioprotective effect of 

cold adaptation (Fig. 3). 

 

Role of protein kinases, NOS, MPT pore, and KATP 

channels in the cardioprotective effect of cold 

adaptation  

Chronic cold exposure (4 °C; 4 weeks) had no effect 

on the phosphorylated AMP-activated protein kinase (p-

AMPK), p-mTOR kinase (mammalian target of 

rapamycin), in the myocardial tissue of sham-operated 

mice[67]. However, after cold adaptation, the levels of p-

AMPK and p-mTOR altered in mice with abdominal 

aortic constriction. Cold adaptation (4 ± 1 °C; 3, 7, 12, 

21, and 45 days) led to an increase in p-AMPKα 

expression in the white adipose tissue of rats[68]. It is 

well known that these kinases are involved in regulating 

cardiac tolerance to IRI[74|]. Therefore, it can be assumed 

that they are involved in the cardioprotective effect of 

cold adaptation. The role of other kinases in cold 

adaptation remains unknown. We established that 

inducible NOS plays an important role in the infarct-

reducing effect of adaptation to chronic hypoxia[115]. It 

has also been demonstrated that cold exposure enhances 

endothelial NOS expression in the brown adipose tissue 

of rats[116]. However, there is no data on the effect of 

cold adaptation on NOS expression in the heart. An 

earlier study has suggested that long-term cold exposure 

(5 ± 2 °C; 5 weeks) decreases the plasma nitrite and 

nitrate levels in mice[58]. These data indicate a reduction 

in NO production after cold adaptation. It has been 

known that MPT pore closure is involved in the 

cardioprotective effect of ischemic preconditioning and 

postconditioning[74]. Tibenska and colleagues obtained 

indirect evidence of the involvement of MPT pore in the 

cardioprotective effect of cold adaptation in rats[39]. 

There is evidence that KATP channels are also involved 

in the cardioprotective effect of pre- and 

postconditioning[74,75], as well as adaptation to 

continuous hypoxia[115]. We found that the KATP channel 

blocker, glibenclamide, abolished adaptation-induced 

cardiac tolerance to IRI [unpublished data] (Fig. 1). 

 
CAN ANGIOTENSIN-II AND ENDOTHELINS 

INCREASE CARDIAC TOLERANCE TO IRI? 
The cardioprotective effect of angiotensin II during 

ischemia and reperfusion of the heart has been well-

documented[117,118]. Angiotensin II acts through two 

receptors: AT1R and AT2R. Evidence has revealed that 

the infarct-reducing effect of angiotensin II acts via G 

protein-independent signaling through the AT1 

receptor[117]. The cardioprotective effect of stimulating 

the AT1 receptor has been confirmed by Nuñez’s 

group[118-120]. However, the blockade of the AT1 

receptor enhances cardiac tolerance to IRI in mice[121].  

In 1996, it was shown that endothelin-1 can mimic 

ischemic preconditioning against infarction in the 

isolated rabbit heart through the activation of the ETA 

receptor and stimulation of PKC[122]. Endothelin-1 

protects the isolated rat heart against IRI via the 

activation of the ETA receptor, stimulation of PKC, and 

opening of the mitoKATP channel[123]. Recently, it has 

been shown that endogenous endothelin-1 and the ETA 

receptor are involved in the cardioprotective effect of 

remote preconditioning in rats[124]. However, it has been 

displayed that the selective ETA receptor antagonist 
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BQ123, can also increase cardiac tolerance to 

reperfusion in rabbits[125]. Based on the above-

mentioned studies, it is reasonable to hypothesize that 

endothelin-1 and angiotensin II can play a role in the 

cardioprotective effect of cold adaptation (Fig. 3).  

 

 

CONCLUSION 

 

Analysis of the published data indicates that cold 

adaptation increases the incidence of developing 

hypertension, coronary artery disease, and AMI in 

human. Moreover, long-term exposure to cold condition 

causes hypertension, cardiac hypertrophy, and cardiac 

tolerance to IRI in rats. Cold-induced hypertension is 

mediated via the activation of aldosterone, AT-1, and 

ETA receptors. It appears that the activation of AT-1 and 

ETA receptors causes cardiac hypertrophy after long-

term cold exposure. TRPV1, adrenergic, thyroid, MR, 

ETA, AT1, PPARγ, α7nAChR. FGF, TNF-α, and M-

cholinergic receptors could be involved in the 

cardioprotective effect of cold adaptation. It is assumed 

that antioxidants, protein kinases, MPT pore, and KATP 

channels contribute to the development of cold 

adaptation, which triggers cardiac tolerance to IRI.  
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