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ABSTRACT 
 

The venom glands are a rich source of biologically important peptides with 
pharmaceutical properties. Scorpion venoms have been identified as a 
reservoir for components that might be considered as great candidates for 
drug development. Pharmacological properties of the venom compounds 
have been confirmed in the treatment of different disorders. Ion channel 
blockers and AMPs are the main groups of scorpion venom components. 
Despite the existence of several studies about scorpion peptides, there are 
still valuable components to be discovered. Additionally, owing to the 
improvement of proteomics and transcriptomics, the number of peptide 
drugs is steadily increasing, which reflects the importance of these 
medications. This review evaluates available literatures on some important 
scorpion venom peptides with pharmaceutical activities. Given that the last 
three years have been dominated by the COVID-19 from the 
medical/pharmaceutical perspective, scorpion compounds with the  
potential against the coronavirus 2 (SARS-CoV-2) are discussed in this review. 
DOI: 10.61186/ibj.3863 
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INTRODUCTION 

 

iologically active peptides can be found in 

natural resources, including bacteria, fungi, 

plants, and animals. These peptides, in 

comparison with their human counterparts, have been 

demonstrated to possess therapeutic properties, 

including higher selectivity, potency, stability in  

in vivo conditions, all of which are required for 

therapeutic development[1]. Venom of the venomous B 
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animals are a great source of peptides with therapeutic 

properties, which exhibit variable function and  

show high selectivity and specificity to human target 

cells[2-4]. For more than two decades, scorpion venoms 

have been studied to identify and characterize the 

important compounds in the venom gland. Findings 

have revealed the pharmacological effects of many 

peptides originated from scorpion venom[5]. 

Scorpion venom contains a complex mixture of 

several low-molecular-weight peptides, mucus, 

oligopeptides, nucleotides, amino acids, enzymes, 

lipids, mucoproteins, biogenic amines and other 

unknown substances[6,7]. Different peptides, including 

neurotoxins, cytotoxins, hemotoxins, and AMPs, have 

also been detected in the venom of scorpions. 

Neurotoxins have been developed for neurological 

paralysis of the prey of scorpion and as a defense 

mechanism against predators[6]. In the venom, these 

toxins deliver neurotransmitters from the autonomic 

nervous system, mainly the sympathetic nervous 

system. Accordingly, some vital functions of the 

cardiovascular, respiratory, and neuromuscular systems 

may be quickly influenced by neurotoxins[8]. 

Sometimes, envenomation leads to cardiac and 

hemodynamic changes, together with cardiogenic 

shock and pulmonary edema as a main factor of 

death[9]. 

 

Scorpion venom peptides with therapeutic 

potentials 

Scorpion and its venom have been applied in 

traditional medicine in China, India, and Africa for 

thousands of years[10]. Scorpion venom is famous for 

its deadly effects on cells, tissues, and organisms. 

However, a significant number of scorpion venom 

peptides have displayed properties that make them 

suitable candidates for drug development. Scorpion 

toxins target ion channels, including sodium, 

potassium, chloride, and calcium. Therefore, they have 

important effects on excitable cells[6] and could be 

considered for designing drugs in the cardiac 

diseases[11], autoimmune diseases[12], and different 

types of cancer[13]. Moreover, some antibacterial and 

antifungal properties have been attributed to different 

scorpion venom peptides. Generally, these peptides are 

classified into two groups: DBPs[14] and NDBPs[15]. 

DBPs are the main scorpion venom groups containing 

three to four disulfide bridges with neurotoxic effects 

on scorpion stung victims, since they mostly affect 

membrane ion channels in the excitable and non-

excitable cells[14]. NDBPs compared to DBPs, are 

small peptides having frequent biological targets[14]. 

The scorpion toxins, which could bind specifically to 

mammalian sodium channels, are composed of 61 to 

76 amino acid residues in length, and their structures 

are stabilized by four disulfide bridges[16]. These 

peptides are grouped into two classes, α- and β-

NaTxs[17]. Binding the α-NaTxs to sodium channels 

results in the slow inactivation of the channels, 

whereas β-NaTxs interaction with Na+ channels causes 

a shift in the voltage dependence of sodium channel 

activation to more negative membrane potentials, 

leading to channel inactivation[18]. Potassium channel 

toxins, which are characterized by 23 to 64 residues in 

the length and three or four disulfide bridges, can 

modulate K+ channels[19]. All identified KTx are 

grouped into α-, β-, γ-, κ-, δ-, λ-[20], and ε-KTx[21] 

subfamilies. The α-KTxs family, the most important 

family of KTxs, is divided into more than 31 

subfamilies[19,22]. Another family of scorpion toxins are 

peptides that modulate calcium channels[23]. 

Kurtoxin[24] and Kurtoxin-like[25] peptides are calcium 

channel toxins that bind to T-type voltage-gated 

calcium channels. Calcin family of peptides includes 

maurocalcin, imperacalcin, hadrucalcin, vejocalcin, 

opicalcin1, opicalcin2, urocalcin, and hemicalcin. 

These toxins have high affinity to RyR1-3, particularly 

RyR1, enhancing their activity by inducing 

subconductance states on the RyR channels[26,27]. Some 

peptides extracted from the scorpion venom glands are 

Cl- channel blockers[28]. Chlorotoxin is the first known 

peptides with high affinity to Cl- channels[29] in human 

astrocytoma and glioma cells[30,31], specially ClC-3 

channel[32]. GaTx1 and GaTx2 originating from the 

venom of Leiurus quinquestriatus scorpion have been 

identified to inhibit the cystic fibrosis transmembrane 

conductance regulator[33] and CIC-2 chloride 

channel[34], respectively. Below, venom components 

with pharmacological properties have been described 

and categorized. 

 

Antimicrobial peptides 

AMPs are produced by bacteria and mammals[35]. In 

recent years, numerous AMPs have been identified 

from a wide variety of animals and plants, as well as 

bacteria and fungi[36]. Scorpions are found as a great 

source of AMPs. It has been suggested that 

antibacterial peptides in scorpion venom can preserve 

the venom gland from infections or enhance the toxin 

activity. Numerous AMPs have been reported from 

scorpion venoms[37,38]. A large number of NDBPs 

originated from the scorpion are AMPs with 

antibacterial, antifungal, antimalarial or antiviral 

properties[14]. Moreover, comprehensive reviews on 

various groups of AMPs found in the venom of 

scorpion species have been studied [21,38-42]. Scorpion 

AMPs are amphipathic and positively charged peptides 

and divided into three basic categories: (1) cysteine-  
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 Table 1. Scorpion-derived cysteine-rich AMPs 
 

Peptide name 
Scorpion 

species 
Target 

Biological 

activity 
Ref. 

Scorpine P. imperator bacteria (B. subtilis, K. pneumoniae)  

and P. berghei 

Antibacterial, 

Anti-malarial 
[43] 

Opiscorpines 1-4 O. carinatus Yeasts and bacteria Antibacterial [44] 

Heteroscorpine-1 H. laoticus Bacterial species (no Gram-specificity) Antibacterial [45] 

Smp76 S. m. palmatus Flaviviruses Antiviral [46] 

G-TI A. australis Gram-positive and -negative bacteria Antibacterial [49] 

Bactridines 1-6 T. discrepans Gram-positive and -negative bacteria Antibacterial [50] 

Cm38 C. margaritatus Gram-negative bacteria Antibacterial [51] 

Ts1 T. serrulatus Filamentous fungi Antifungal [52] 

Ts7 T. serrulatus T. cruzi Antiparasitic [55] 

Su6-B T. serrulatus T. gondii Antiparasitic [56] 

rMeuTXKβ1 M. eupeus Plasmodium Antimalarial [57] 

BmKDfsin3 M. martensii HCV Antiviral [58] 

BmKDfsin4 M. martensii HBV Antiviral [59] 

rBmKDfsin4 M. martensii Gram-positive bacteria Antibacterial [60] 

MeuPep34, MeuVAP-6, MeuAP-18-1 M. eupeus Gram-positive bacteria Antibacterial [61] 

 

containing peptides with disulfide bridges, (2) 

amphipathic α-helical peptides without cysteine 

residues, and (3) glycine- or proline-rich peptides[40]. 

Some important AMPs obtained from scorpions are 

described below. Scorpion venom peptides with 

cysteine residues mostly have three or four disulfide 

bridges and could be categorized according to their 

interaction with ion (Na+, Ca2+, K+, and Cl-) 

channels[40] (Table 1). Scorpine is the first cysteine-

stabilized α/β fold peptide identified in the Pandinus 
imperator venom and has shown great antibacterial and 

effective antimalarial activity. It possesses a unique 

amino acid sequence with the C‐terminal region similar 

to the insect defensins containing three disulfide 

bridges and N‐terminal sections like cecropins[43]. 

Studies   have   reported   two   scorpine-like    peptides 

Including opiscorpine (opiscorpine 1-4) from 

Opistophtalmus carinatus[44] and Heteroscorpine-1 

from Heterometrus laoticus, which all were grouped as 

long-chain K-channel toxins into one family[45]. Four 

potent AMPs have already been characterized from 

Scorpio maurus palmatus, among which Smp76 was 

scorpion-like peptide[46] with antiviral activity[47]. The 

anti-HCV and anti-dengue virus activities of Smp76 

could develop a new potential therapeutic against these 

flaviviruses[47]. In this regard, the recombinant Smp76 

has shown the ability to control the viral infection in 

cell lines and primary mouse macrophages. 

Inactivation of the viruses occurs by upregulating the 

IFN-β expression through initiating interferon 

regulatory transcription factor 3 phosphorylation, 

leading to the enhancement of the type-I IFN response 

and inhibition of viral infection[48]. G-TI, bactridines 1-

6, and Cm38 peptide isolated respectively from the 

venom gland of Androctonus australis hector[49], Tityus 

discrepans[50], and Centruroides margaritatus[51] have 

demonstrated high antibacterial activity against a wide 

range of Gram-positive and Gram-negative bacteria. 

These peptides have shown dual function as a sodium 

channel blocker and AMPs. Likewise, Ts1 from TsV 

venom has been reported as a sodium channel toxin 

that could inhibit the growth of a variety of fungi[52]. 

The effect of venom obtained from scorpion TsV was 

estimated by exposing the murine macrophage cell line 

to TsV and its toxins (Ts1, Ts2, and Ts6) with or 

without lipopolysaccharide stimulation. While crude 

venom (TsV) and other toxins did not produce 

cytotoxic effects, TsV, Ts1, and Ts6 trigged the release 

of nitric oxide, IL-6, and TNF-α in J774.1 cells. It has 

been suggested that Ts2 can promote anti-

inflammatory activity through secreting the IL-10[53]. 

In fact, TsV has an immunomodulatory effect on 

human T-lymphocyte functions[54]. Apparently, 

treatment with TsV venom can regulate immune 

mechanism and also activate MAPKs to combat 

Trypanosoma cruzi infection. It has been 

recommended that Ts7 fraction from crude TsV 

contains components that are responsible for 

generating pro-inflammatory immune responses of T. 
cruzi-infected macrophages[55]. It has also been 

confirmed that TsV components can induce the 

production of inflammatory mediators by immune cells 

against Toxoplasma gondii activity[56]. Mesobuthus 

eupeus has shown considerable antimicrobial and 

antiviral activity. MeuTXKbeta1 (from M. Eupeus) is a 

TsTXKβ-related peptide having unique two-domain 

peptides, which provides neurotoxic and cytolytic 

activities for this peptide. Synthetic rMeuTXKbeta1 
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derived from MeuTXKbeta1 has shown anti-

plasmodium activity with minimal toxic effects on 

bacterium and mouse erythrocytes and poor interaction 

with K+ channels[57]. BmKDfsin3 derived from M. 

martensii could inhibit HCV replication through 

suppressing p38 MAPK signal pathway[58], and 

BmKDfsin4 successfully controlled HBV 

replication[59] and Gram-positive bacteria in vitro[60]. 

Three AMPs, including meuPep34, meuAP-18-1, and 

meuVAP-6, were identified and characterized from the 

transcriptome of the M. eupeus venom gland. The 

meuAP-18-1 and meuVAP-6 are NDBPs, and 

meuPep34 is a cysteine-rich defensin-like peptide. Due 

to similarity in DNA sequence of meuPep34 with other 

AMPs, it has been suggested that meuPep34 is the 

most potent antibacterial peptide that could control 

bacterial  biofilm[61].   The   majority of   NDBPs have 

amphipathic α-helical structures without cysteine 

residue, which displays a flexible structure[21].  

To date, various NDBPs shave been isolated from 

varying scorpion species (Table 2). Meucin-18, 

meucin-13[62], and meucin-49[63] peptides isolated from 

M. eupeus have demonstrated extremely powerful 

antibacterial activity against a wide range of bacteria, 

including Gram-positive and Gram-negative bacteria. 

Meucin-24 and meucin-25[64] from scorpion M. eupeus 

have capability of preventing the Plasmodium 

development with no toxicity to mammalian cells. The 

exclusive activity of these peptides against 

plasmodium makes them effective candidates for 

optimizing new antimalarial drug design[64]. MesoLys- 

C  (a c-type lysozyme)[65]  and   Me-CLAP  (caerin-like 

AMP)[66] have been isolated from scorpion M. eupeus 

and are known as potent AMPs. Marcin-18 peptide 

from M. martensii has revealed identical sequence and 

high homology with AMPs meucin-18, and megicin-18 

has indicated significant inhibitory activity against 

Gram-positive bacteria, particularly clinical antibiotic-

resistant strains[67]. BmKbpp originated from M. 

martensii Karsch venom gland can inhibit the 

antimicrobial activity of both Gram-positive and 

Gram-negative bacteria with the MIC value ranging 

from 2.3 μM to 68.2 μM. BmKbpp is also capable of 

blocking some antibiotics-resistant pathogens growth 

with low hemolytic activity. It has been considered as  

a   potent  therapeutic  candidate  for   developing   new 

antibiotics[68]. Stigmurin has been discovered from T. 

stigmurus  with antifungal and antibacterial activity[69]. 
   
 

 Table 2. Scorpion-derived AMPs without cysteine residues 

Peptide name Scorpion species Target Biological activity Ref. 

Meucin-18 and -13 M. eupeus Gram-positive and -negative bacteria Antibacterial [62] 

Meucin-49 M. eupeus Gram-positive and -negative bacteria Antibacterial [63] 

Meucin-24 and -25 M. eupeus Plasmodium Antimalarial [64] 

MesoLys-C Iranian M. eupeus Gram-positive and -negative bacteria Antibacterial [65] 

Me-CLAP Iranian M. eupeus Gram-positive and -negative bacteria Antibacterial [66] 

Marcin-18 M. martensii Gram-positive bacteria Antibacterial [67] 

BmKbpp M. martensii Gram-positive and -negative bacteria Antibacterial [68] 

Stigmurin T. stigmurus Gram-positive bacteria and fungi Antibacterial and antifungal [69] 

TsAP-1 and -2 T. serrulatus Gram-positive bacteria and yeast Antimicrobial [70] 

ToAP2 T. obscurus 
C. albicans, C. neoformans, and M. 

massiliense 

Antifungal and  

anti-mycobacterial 
[71-73] 

NDBP-5.7 and -5.5 O. cayaporum Candida spp. and M. massiliense 
Antifungal and  

anti-mycobacterial 
[71,73,74] 

Pandinin 1 and 2 P. imperator Gram-positive bacteria Antimicrobial [75] 

Opistoporins 1 and 2 O. carinatus Gram-negative bacteria and fungi Antibacterial and antifungal [76] 

Imcroporin I. maculates Gram-positive bacteria Antimicrobial [80] 

Vejovine V. mexicanus Gram-negative bacteria Antibacterial [37] 

Mucroporin L. mucronatus Gram-positive bacteria Antibacterial [81] 

Hp1090 H. petersii HCV Antiviral [82] 

Hp1036 and Hp1239 H. petersii HSV-1 Antiviral [83] 

Hp1404 H. petersii Gram-positive bacteria Antibacterial [84] 

BmKn-2 B. martensii Kasch Gram-positive and -negative bacteria Antibacterial [88] 

Kn2-7 B. martensii Kasch HIV/AIDS Antiviral [90] 

AamAP1 and 2 A. amoeruxi Gram-positive and -negative bacteria Antibacterial [91] 

IsCT and 2 O.  madagascariensis Gram-positive and -negative bacteria Antibacterial 

 

[77,78] 

 

Parabutoporin Parabuthus schlechteri Gram-negative bacteria and fungi Antibacterial and antifungal [79] 
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Two linear peptides TsAP-1 and TsAP-2 and their 

analogues (TsAP-S1 and TsAP-S2) from TsV are 

recognized as AMPs against Gram-positive bacteria 

and yeasts[70]. Higher helical content of TsAP-2 

(76.47%) and hydrophobic moment (0.51 µH) could 

empower the TsAP-2 antimicrobial property compared 

to TsAP-1 (58.82% helix; hydrophobic moment of 0.43 

µH)[70]. Besides, antitumoral potential of stigmurin  

has been reported to be similar to TsAP-2[69,70].  

ToAP2 from Tityus obscurus and NDBP-5.7  

from   Opisthacanthus   cayaporum   were  synthesized 

from cDNA library of these scorpions with antifungal 

activities against different Candida spp. and 

Cryptococcus neoformans.  Both peptides can improve 

cell permeability and modify the morphology of C. 
albicans cells; however, ToAP2 was more efficient in 

inhibiting filamentation. ToAP2 has been reported as 

the most effective antimicrobial agent and shown 

synergic effect with both fluconazole and amphotericin 

B, while NDBP-5.7 presented a synergic effect with 

fluconazole only[71]. Previously, it has been reported 

that ToAP2 peptide has activity against both 

Cryptococcus neoformans and Candida spp., as well as 

restrain C. albicans biofilm formation[72]. Similarly, 

ToAP2 and NDBP-5.5 can prevent Mycobacterium 
massiliense strains as an antimycobacterial agent in 

vitro and in vivo[73,74].  

Cationic venom peptides, i.e. Pandinin 1 and 2[75], 

opistoporins 1 and 2[76], IsCT[77], IsCT2[78], and 

parabutoporin[79], from African scorpion have shown 

antibacterial, antifungal and hemolytic activities. It has 

been reported that opistoporin 1 and parabutoporin 

have strong inhibitory potential against the growth of 

Gram-negative bacteria[76], while the peptides 

pandinins 1 and 2, IsCT, and IsCT2 have high 

antimicrobial effect on Gram-positive bacteria[75,77,78]. 

Imcroporin extracted from Isometrus maculates venom 

has shown potency against Gram-positive bacteria and 

mainly against antibiotic-resistant bacteria, including 

methicillin-resistant Staphylococcus aureus; thus, it 

could be considered as a potent candidate for 

developing new and effective antibiotic drugs[80]. 

Vejovine from Vaejovis mexicanus has low 

cytotoxicity on human erythrocytes and affects the 

growth of Gram-negative bacteria, as well as can be 

used against multidrug-resistant bacteria[37]. 

Mucroporin is a cationic peptide isolated from Lychas 

mucronatus showed inhibitory effect against Gram-

positive bacteria[81].  

Three α-helical peptides (Hp1090, Hp1036, and 

Hp1239) derived from Heterometrus petersii have 

shown antiviral activity. Hp1090 directly inhibits HCV 

infection with an IC50 of 7.62 μg/ml (5.0 μM) in 

vitro[82]. Both Hp1036 and Hp1239 effectively inhibit 

the activity of HSV-1 through preventing the viral 

attachment and entry stages[83]. The cationic AMP 

Hp1404 extracted from the scorpion H. petersii venom 

revealed a specific inhibitory activity against Gram-

positive bacteria such as Staphylococcus aureus[84]. 

Interestingly, S. aureus has not shown resistance to this 

peptide. Hp1404 has a low toxicity in both mammalian 

cells and mice[84]. Antimicrobial assays have also 

verified that Hp1404 was more potent against 

carbapenem-resistant Acinetobacter baumannii, than 

other examined peptides[85]. Peptides isolated from 

Hp1404 have indicated antimicrobial activity against 

Gram-positive and Gram-negative bacteria, particularly 

multidrug-resistant A. baumannii[86]. In comparison to 

Hp1404 have shown less toxicity and higher 

antibiofilm effect[86]. Several analogues of Hp1404 

were synthesized and theie antimicrobial activity was 

assessed. Hp1404-T1e was selected as the most potent 

antibacterial and antibiofilm analogue, especially 

against multidrug-resistant Pseudomonas aeruginosa 

strains[87].  

BmKn-2 peptide from Buthus martensii Karsch is 

characterized as a strong AMP against both Gram-

positive and Gram-negative bacteria[88]. BmKn-2 

peptide has also demonstrated antitumoral activity 

against human oral cancer cells[89]. Kn2-7 peptide was 

originated from BmKn-2 by exchanging serine for 

glycine and alanine for arginine or lysine to improve its 

AMP activity. Kn2-7 could potentially prevent HIV-1 

infection by direct interaction with HIV-1 envelope. 

This peptide has shown low cytotoxicity to host cells 

by a selective index of 13.93[90]. Apart from Kn2-7, 

both mocroporin-M1 and BmKn2 have been 

recognized as potent anti-HIV-1 peptides[90].  AamAP1 

and AamAP2 extracted from Androctonus amoeruxi 

has shown inhibitory activity against Gram-positive 

and -negative bacteria[91]. Recently, this peptide has 

been applied as a platform for synthesizing a novel 

peptide named AamAP1-Lysine with improved 

antibacterial activity and reduced cytolytic activity[92]. 

Further evaluation reflected that both AamAP1-

Lysine[93] and A3[94], another analogue of AamAP1, 

when administrated with several common antibiotics 

can enhance antimicrobial effects of those antibiotics 

against multidrug-resistant strains of bacteria. 

Some scorpion peptides are cysteine-rich (Table 3). 

Serrulin peptide identified in the hemolymph of the 

TsV scorpion has a high percentage of glycine residues 

(G), similar to the glycine-rich peptides from 

spiders[95]. Serrulin has shown a wide range of 

antimicrobial activity with no hemolytic activity 

against   human  erythrocytes[95].  Parabutoporin    from 

Parabuthus schlechteri venom has been characterized 

as a 45-mer lysine-rich peptide that can be active 
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Table 3. Scorpion-derived amino acid-rich AMPs 

Peptide name 
Scorpion 

species 
Target Biological activity Amino acid Ref. 

Serrulin T. serrulatus 
Gram-positive and  

-negative bacteria, fungi, yeast 

Antibacterial/ 

antifungal 
Glycine [92] 

      

Parabutoporin (PP) P. schlechteri 
Gram-positive and -negative 

bacteria, fungi 

Antibacterial, 

antifungal 
Lysin [91] 

      

Ctry2459-H2, Ctry2459-H3 C. tryznai HCV Antiviral Histidine [93] 

      

Eval418-FH5 E. validus HSV-1 Antiviral Histidine [94] 

 

against a wide spectrum of bacteria and fungi[79]. In 

some cases, adding special amino acid fragments to a 

peptide can improve its antimicrobial activity. For 

instance, Ctry2459 established from the cDNA peptide 

library of Chaerilus tryznai could inhibit HCV initial 

infection, but due to inadequate peptide activity, the 

viral infection could not be suppressed properly. 

However, designed histidine-rich peptides Ctry2459-

H2 and Ctry2459-H3 could inhibit the viral activity. In 

addition, both peptides display lower pharmacological 

toxicities than the wild-type peptide[96]. Eval418 from 

Euscorpiops validus venom could control the initiation 

of HSV-1 infection, but modified Eval418-FH5 peptide 

with histidine-rich improved antiviral activity[97]. 

According to the World Health Organization 

estimation, antibiotic resistance is a major threat to 

global public health, which could cause about 10 

million deaths each year by 2050[98]. Therefore, 

discovering alternative antibiotics from natural AMPs 

might be the most promising action for treating 

multidrug-resistant pathogen infections[99]. 

 

Anti-SARS-CoV peptides 

Following the COVID-19 epidemic, research was 

conducted on the components of the scorpion venom 

gland as the antiviral compounds for the treatment of 

COVID-19. Due to antiviral effects of some scorpion 

venom peptides on some members of Coronaviridae 

family, these peptides were selected to further evaluate 

their effects on SARS-CoV-2 virus[100]. Some 

investigations have also been conducted to assess the 

potential of other antiviral compounds derived from the 

venom gland of scorpions[101]. There are several AVPs 

with highly promising anti-SARS-CoV-2 activities 

identified from scorpion venom. In an analysis in 

bioinformatics manner, six mutants of meucin-18, a 

scorpion venom peptide with strong antimicrobial 

effect, was designed through the following mutations: 

A9T, H4Y, A9S, H4F, K7H, and (A9T + H4F). All 

mutated peptides originated from meucin-18 were 

docked to the RBD domain of the spike protein of 

SARS-CoV-2 virus to investigate the interactions  

with the RBD domain, an important domain of SARS-

CoV-2 spike protein. COVID-19 disease begins to 

develop as a result of interaction between RBD domain 

and the ACE2 receptor in human cells. A9T mutant (or 

FFGHLFKLTTKIIP SLFQ) of meucin-18 has shown 

the best reaction to the RBD domain of the spike 

protein, even better than native meucin-18. 

Furthermore, this peptide could change the native 

conformation of the RBD domain of spike protein. 

Since the successful interaction with the RBD domain 

can prevent the interaction of ACE2 receptor with this 

domain and leads to the unsuccessful entry of the virus 

into the cell, this protein can be considered as a drug 

for the treatment of COVID-19[102]. A mutant version 

of mucroporin called mucroporin-M1 (LFRLIKSL 

IKRLVSAFK) was designed through G3R, P6K, 

G10K, and G11R mutations. Mucroporin-M1 was 

more potent antiviral compound than mucroporin[103]. 

Mucroporin-M1 has demonstrated activity against 

SARS-CoV virus along with MERS-CoV, HBV, and 

influenza H5N1 viruses[103,104]. After binding of 

mucroporin-M1 to the SARS-CoV virus through a 

direct virucidal effect, the strong electrostatic affinity of 

mucroporin-M1 leads to the destruction of the virus 

envelope and subsequently decreases viral 

infectivity[105].  Mucroporin-M1   has    direct   virucidal 

action with EC50 of 14.46 μg/ml (7.12 μM) against 

SARS-CoV[106]. Considering the anti-SARS-CoV 

activity determined for mucroporin-M1, an anti-SARA-

CoV potential is also suggested for this peptide[101].  

 

Cancer therapeutics 

The International Agency for Research on Cancer 

has recently reported a raise in the global cancer 

burden to 19.3 million new cases and 10.0 million 

deaths in 2020[107]. An increasing number of in vitro 

and in vivo studies have shown that scorpion venoms 

and toxins can decrease cancer growth, induce 

apoptosis and inhibit cancer progression and 

metastasis[10].  Thus, scorpion venom is used to treat 

various cancers such as human neuroblastoma, 

leukemia,    glioma,    brain     tumor,   breast     cancer, 

melanoma, prostate cancer, and human lung adeno-

carcenomas[108]. Studies have also suggested that 

scorpion venoms and toxins are applied as alternative 

treatments in cancer and metastasis therapy[10,109].   
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    Table 4. Scorpion-derived anticancer peptides 

Peptide name Scorpion species Target Biological activity Ref. 

CTX L. quinquestriatus glioma cells Anti-invasive, Antimetastasis [109] 

     

BmKn-2 M. martensii HSC4 and KB cells Apoptosis induction [120] 

     

BmK AGAP B. martensi Breast cancer cell 
Anti-invasive 

Migration inhibition 
[121] 

   

 

 

Bengalin H. bengalensis Leukemic cells 
Cell death through autophagy 

Apoptosis induction 
[122] 

   

 

 

TsAP-1, TsAP-2 T. serrulatus Human cancer cell lines Anti-proliferative [70] 

     

Stigmurin,  TsAP-2 T. stigmurus Human cancer cell lines Anti-proliferative [123] 

     

Neopladine 1, Neopladine 2 T. discrepans Human breast carcinoma Apoptosis induction [124] 

     

Margatoxin C. margaritatus Human lung adenocarcinoma Anti-proliferative [125] 

     

Mauriporin A. mauritanicus Prostate cancer cell lines Anti-proliferative [113] 

 

 

Ample evidence has emphasized that ion channel 

dysfunction is related to cancer development[110,111]. 

Scorpion venoms contain peptide toxins that can  

modify  the  activity  of  voltage-gated Na+/K+ 

channels.  Consequently, these toxins could change the 

activity of onco-channels[13], which are vital for 

pharmaceutical industry in terms of drug design and 

development[112] (Table 4).   

CTX, a chlorotoxin and a small neurotoxin of 36 

amino acids isolated from the venom of the scorpion 

Leiurus quinquestriatus, is known as the first extracted 

chloride channel blocker[29,109]. Further study has 

revealed that chlorotoxin could exclusively bind to the 

surface of glioma cells and show an anti-invasive effect 

due to interacting with MMP-2 isoforms, as the main 

CTX receptor, on the surface of glioma cells[113]. Since 

its discovery, CTX has been linked to nanoparticles, 

radioisotopes, and fluorescent molecules[114]. For 

instance, “Tumor paint” is a complex of CTX-Cy5.5 (a 

near-infrared fluorescent dye) to spot cancer foci and 

metastases noninvasively and under simulated surgical 

operating[115]. It has been shown that CTX-modified 

liposomes are capable of increasing the absorption of 

doxorubicin hydrochloride in breast tumor 4T1 cells in 

vitro through MMP-2. The CTX modification could 

improve the targeting ability in the metastatic breast 

cancer in vivo[116]. Recent data have suggested that 

CTX could bind the endocytic receptor NRP1, leading 

to the enhanced drug uptake and improved antitumor 

activity in vivo[117]. Besides, three new chlorotoxin-like 

CTX, including meuCl14, meuCl15, and meuCl16, 

were identified in the transcriptome of M. eupeus 

venom gland with high sequence identity (71.4%) with 

chlorotoxin. The meuCl14 has been shown to be a 

promising candidate in cancer drug delivery 

systems[118]. BmKn-2, the extracted peptide from M. 
martensii Karsch, can induce apoptosis in HSC-4 at 

IC50 of 29 μg/ml by modulating the expression levels 

of caspase-3, -7, and -9, and BCL-2, as well as exhibit 

strong antibacterial activity[89]. One study has revealed 

that BmKn-2 stimulates apoptosis in HSC4 and KB 

cells through the activation of tumor suppressor 

p53[119]. The anticancer assessment of Buthus martensi 

(BmK) venom has effectively shown the induction of 

apoptosis in malignant glioma U251-MG cells. BmK 

venom induces the cell death specifically in the 

cultured malignant glioma U251-MG cells at a 

concentration of 10 mg/ml. After the incubation of 

U251-MG cells with BmK venom for 32 and 40 h, 

36.2% and 63.1% of the cells showed apoptosis, 

respectively. Furthermore, BmK venom could 

significantly inhibit the tumor growth in vivo, which 

was assessed using U251-MG tumor xenografts in the 

severe combined immunodeficiency mice[120]. The 

antitumor-analgesic peptide BmK AGAP isolated from 

B. martensii inhibits breast cancer cell stemness, EMT, 

migration, and invasion by reducing PTX3 through 

NF-κB and Wnt/β-catenin signaling pathways in vitro 

and in vivo[121]. The influence of Rhopalurus junceus 

venom on the cell viability and apoptosis of MDA-

MB-231 human breast carcinoma cell line has shown 

that the venom of this scorpion contains peptide(s) or 

protein(s), which is/are responsible for inducing 

apoptosis seen in MDA-MB-231 cells by modulating 

the expression of apoptosis-related genes, including 

p53, bax, noxa, puma, caspase 3, p21, BCL-2, and 

BCL-xl[122]. The venom of Heterometrus bengalensis 

displayed antiproliferative, cytotoxic and apoptogenic 

properties on human leukemic cell lines U937 and 

K562[123]. Subsequently, a novel protein, Bengalin (72 

kDa), was isolated from the same scorpion venom. 

This protein is responsible for cell death at IC50 values 

of 3.7 and 4.1μg/ml for U937 and K562 cells, 

respectively. According to evidence, Bengalin might 
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affect human leukemic cells through the induction of 

apoptosis, by facilitating mitochondrial death cascade, 

as well as by inhibiting HSPs, suppressing telomerase 

activity, and initiating DNA damage[124]. Apart from 

apoptosis properties, the venom components of H. 

bengalensis stimulate a different cell death pathway in 

the form of autophagy in human leukemic U937 

cells[125]. TsV scorpion venom could control the 

cervical cancer through the induction of 

antiproliferative and antiapoptotic effects[126]. Besides 

the antibacterial potency of TsAP-1 and TsAP-2 

isolated from T. serrulatus, they can prevent the 

growth of human cancer cell lines[70]. Both stigmurin 

and TsAP-2 (identical to TsAP-2 from T. serrulatus) 

from T. stigmurus venom have shown an 

antiproliferative effect on tumor cells, as well as an 

antibacterial activity. Both peptides were able to lower 

microbial load and inflammation in experimental 

sepsis[127]. Neopladine-1 and -2, from T. discrepans 
scorpion venom, induced apoptosis in 6.3% and 4.1% 

of SKBR3 cells, respectively. Apoptosis mechanism 

through the activation of neopladinas is induced by Fas 

signaling involving in FasL and BCL-2 expression[128]. 

MgTX, isolated from the venom gland of Centruroides 

margaritatus, suppressed human lung tumor through 

blocking Kv1.3. The inhibitory effect of this peptide 

extensively improved the expression level of p21 

(Waf1/Cip1) and reduced the expression level of Cdk4 

and cyclin D3. Injection of MgTX into nude mice 

reduced the tumor volume[129]. Mauriporin is a novel 

NDBP from the venom gland of scorpion Androctonus 

mauritanicus that can be effective in the control of 

prostate cancer. It has been found that synthetic 

mauriporin can inhibit the proliferation of prostate 

cancer cell lines at IC50 4.4–7.8 l M[130]. Studies on the 

scorpion Odontobuthus doriae have confirmed the 

ability of its venom to inhibit DNA synthesis in 

proliferating human breast cancer cells (MCF-7)[131] 

and human neuroblastoma cells[132].  

Analgesic peptides 

Previous studies have revealed that Nav channel 

deregulation leads to many human disorders, including 

chronic neuropathic pain[133]. These voltage-gated Na+ 

channels are possible targets for modification by a 

variety of scorpion toxin. Accordingly, scorpion toxins 

may be useful for developing target-specific 

analgesics[133] (Table 5). Some studies have shown that 

sodium channel subtypes Nav1.7, Nav1.8, and Nav1.9 

play a significant role in the transmission of 

nociceptive signals[134]. Some analgesic peptides have 

been identified in the venom glands of various 

scorpion species. Buthus martensii Karsch is a widely 

studied species whose venom has several neuroactive 

peptides, including analgesic peptides[135]. One of the 

peptides extracted from B. martensii Karsch with 

analgesic property is BmK AS, which has shown 

analgesic activity in an animal inflammatory pain 

model by modulating Nav1.3 channel[136].  

BmK-YA has been found as an enkephalin-like 

peptide that could regulate mammalian opioid 

receptors. The most affected subunit is δ-subtype, 

which displays a pharmacological profile different 

from morphine activity[137]. Another peptide, BmK 

AngM1, has an analgesic effect on mice at the dose of 

0.8 mg/kg (63% inhibition efficiency), but the LD50 

was higher than 50 mg/kg[138]. BmK AGAP, the 

anticancer peptide mentioned above, inhibited 

inflammation-associated pain and had an MAPK-

mediated mechanism involving in pain-associated 

behavior[139]. AGAP also alters Nav1.7 channel[140]. 

ANEP has shown the same activity in a mouse-twisting 

model and the hot plate assay by inhibiting Nav1.7 

channel[141]. BmK AGP-SYPU1[142] and BmK AGP-

SYPU2, two analgesic peptides[143] extracted from a 

Chinese scorpion, are significantly activated by adding 

the arginine[144] and  glycine[145] residues in the C- 

terminal region, respectively. Recombinant (rBmKM9) 

 

Table 5. Scorpion-derived analgesic peptides 

Peptide name Scorpion species Ion channel target Ref. 

BmK AS B. martensii Karsch Nav 1.3 [136] 

BmK-YA B. martensii Karsch Mammalian opioid receptors ( μ, δ and κ subtype) [137] 

(BmK) AngM1 B. martensii Karsch Nav, Kv [138] 

BmK AGAP B. martensii Karsch Nav 1.7 [139] 

ANEP B. martensii Karsch Nav1.7 [141] 

BmK AGP-SYPU1 B. martensii Karsch - [142] 

BmK AGP-SYPU2 B. martensii Karsch - [167] 

BmKM9  (rBmKM9) B. martensii Karsch Nav1.4,  Nav1.5,  Nav1.7 [146] 

Amm VIII A. mauretanicus Nav 1.2 [148] 

TsNTxP T. serrulatus Nav [149] 

Hetlaxin H. laoticus Kv1.3 [150] 

Leptucin H. lepturus - [151] 
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peptide synthesized from BmKM9 has indicated a 

strong impact on Nav1.4, Nav1.5, and Nav1.7 channels 

and has been shown to delay sodium channel 

inactivation[146]. Evidence has revealed that Ser54 in 

the BmK9 neurotoxin plays an important role in the 

antinociceptive activity through hydrogen bond 

formation with its side-chain hydroxyl group[147]. Amm 

VIII purified from Androctonus mauretanicus 
mauretanicus venom gland is an α-toxin that affects 

neuronal Na+ channel (Nav 1.2) more than the skeletal 

muscle Na+ channel (Nav 1.4) in rats[148]. TsNTxP, a 

non-toxic protein from TsV, has an antinociceptive 

effect through stimulating the voltage-gated sodium 

channels[149]. Furthermore, this protein might modulate 

glutamate release from the synaptosomes of mouse 

spinal cord without any evidence of acute adverse 

effects. Therefore, TsNTxP may be a potent nontoxic 

drug for the treatment of neuropathic pain[149]. Hetlaxin 

from Heterometrus laoticus venom exhibited both anti-

nociceptive and anti-inflammatory properties. This 

peptide belongs to the alpha-toxin family and has 

shown high affinity to Kv1.3 potassium channel[150]. 

Leptucin isolated from Hemiscorpius lepturus scorpion 

possessed analgesic activity without any sign of 

hemolysis or cytotoxicity on mice. It could, therefore, 

be considered a potent candidate for designing new 

analgesic drugs[151].  
 

Bradykinin-Potentiating peptides 

The kinin system-bradykinin is essential to promote 

vascular permeability and initiate vasodilatation in 

some arteries and veins[152]. The discovery  

of bradykinin[153] and the bradykinin-potentiating 

peptides[154] offered a new understanding of 

cardiovascular pathophysiology. After development  

of captopril  as  the  first  active-site  directed  inhibitor 

of ACE, it has been used worldwide to treat human 

hypertension[155]. In recent years, studies on the 

bradykinin potentiating-peptides from scorpion venom 

have improved. The venom of T. serrulatus has 

demonstrated that the bradykinin potentiating factors 

could influence blood pressure through the inhibition 

of ACE activity and bradykinin receptor synthesis[156]. 

Peptide K12, derived from the venom gland of B. 
occitanus, exhibited an obvious physiological 

potentiation of Beadykininon both guinea pig ileum 

and rat uterus. This peptide also firmly increases the 

depressor effect of bradykinin on rats’ arterial blood 

pressure. Peptide K12 can inhibit ACE without being 

proteolyzed by the enzyme[157]. Assessment of the C-

terminal region of BmKbpp, an AMP from M. 

martensii, has confirmed the bradykinin-potentiating 

activity of this peptide. The activity of BmKbpp-C is 

more powerful than BmKbp[68]. Hypotensin or TistH as 

another peptide originated from T. stigmurus has 

shown bradykinin-potentiating activity. This peptide 

potentiates the bradykinin activity without showing 

any cytotoxicity effects. Besides, it inhibits ACE, 

independently[158]. TsHpt-I, from the venom gland  

of TsV and its synthetic analogue peptides, were  

able to potentiate the hypotensive effect of 

bradykinin[159].  

 
Immunosuppressive toxins 

The Kv1.3 voltage-gated potassium channel 

regulates membrane potential and calcium signaling in 

human effector memory T cells that are key mediators 

of autoimmune diseases such as multiple sclerosis, 

type 1 diabetes, and rheumatoid arthritis. Thus, Kv1.3 

blockers have been considered for the treatment of 

autoimmune diseases[160]. OSK1 (α-KTx3.7), isolated 

from the venom gland scorpion Orthochirus 

scrobiculosus, along with the related analogues, was 

assessed in mice. OSK1 is a powerful blocker of the 

three types of Kv channel (Kv1.1, Kv1.2, and Kv1.3) 

with IC50 values of 0.6, 5.4, and 0.014 nM, respectively 

and blockes Ca2+-activated KCa3.1 channel with IC50 

values of 225 nM[161]. Among the OSK1 analogues, 

[K16,D20]-OSK1 is the most potent blocker on Kv1.3 

channel, with an IC50 value of 0.003 nM, which is 

considered for the management of memory-T-cell-

mediated immune responses[161]. Vm24, derived from 

the venom gland of the Vaejovis mexicanus smithi, has 

shown high affinity to Kv1.3 channels in human 

lymphocytes. Vm24 blocks K+ channel, leading to the 

prevention of Ca2+ signaling in human T lymphocytes 

and T-cell proliferation in vitro as well as repressed 

delayed-type hypersensitivity responses in rats in 

vivo[12]. These properties is used for treating certain 

autoimmune disorders such as multiple sclerosis, 

rheumatoid arthritis, and type 1 diabetes diseases[12]. 

ADWX-1, the new analogue of scorpion toxin 

BmKTX[162], could inhibit Kv1.3 channel, 100-fold 

higher than the native BmKTX peptide[163]. HsTX1, 

isolated from the scorpion Heterometrus spinnifer and 

its analogues, PEG-HsTX1 [R14A] and HsTX1 

[R14A], could block Kv1.3.[164]. It has been found that 

the Ts6 and Ts15 toxins extracted from TsV inhibit the 

Kv1.3 channels. Further research has revealed that 

Ts15 can block the Kv2.1 channel, and both Ts6 and 

Ts15 toxins can suppress the delayed-type hyper-

sensitivity response by T cells after 24 h in vivo[165]. 

St20 is a DBP that has been found in the venom of 

Scorpiops tibetanus. It is able to prevent the  

expression of the CD69 (cell surface marker) and the 

secretion of IL-2, IFN-γ, and TNF-α in the activated 

human T cells. The animal experiments have shown 

that St20 lessens the delayed-type hypersensitivity 

reactions[166]. 
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Conclusion 

Venom glands of different species of scorpions are 

essential sources of bioactive components. The 

importance of scorpion venom in the production and 

development of new drugs for the treatment of 
incurable diseases or for the production of drugs with 

greater therapeutic effects is undeniable. This study 

attempted to summarize the current state scorpion-

derived peptides with pharmaceutical activities. 
Certainly, more advanced research is being performed 

on scorpion peptides and their pharmaceutical effects, 

which will shed light on therapeutic applications of 

these peptides in future.  
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