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ABSTRACT 
 

Background: Hypoxic tumor microenvironment is one of the important 
impediments for conventional cancer therapy. This study aimed to 
computationally identify hypoxia-related mRNA signatures in nine hypoxic-
conditioned cancer cell lines and investigate their role during hypoxia.  
Methods: Nine RNA-Seq expression data sets were retrieved from the Gene 
Expression Omnibus database. DEGs were identified in each cancer cell line. 
Then 23 common DEGs were selected by comparing the gene lists across the 
nine cancer cell lines. qRT-PCR was performed to validate the identified DEGs.   
Results: By comparing the data sets, GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, 
CA9, EGLN3, HK, PDK1, KDM3A, UBC, and P4HA1 were identified as hub 
genes. In addition, miR-335-5p, miR-122-5p, miR-6807-5p, miR-1915-3p, miR-
6764-5p, miR-92-3p, miR-23b-3p, miR-615-3p, miR-124-3p, miR-484, and miR-
455-3p were determined as common miRNAs. Four DEGs were selected for 
mRNA expression validation in cancer cells under normoxic and hypoxic 
conditions with qRT-PCR. The results also showed that the expression levels 
determined by qRT-PCR were consistent with RNA-Seq data.  
Conclusion: The identified PPI network of common DEGs could serve as 
potential hypoxia biomarkers and might be helpful for improving therapeutic 
strategies. DOI: 10.52547/ibj.3803 
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INTRODUCTION 

 

 gene expression signature is a single or 

combined group of genes whose expression 

responds to a particular signal or changes in 

cellular status in a predictable way. Gene signatures are 

frequently extracted from a set of DEGs by comparing 

two groups, such as cell lines under different treatment 

conditions. Gene expression signatures can therefore 

be used as surrogate markers to comprehend the 

complexity of pathway activation. 

Oxygen deprivation occurs in almost all solid 

tumors. A shortage of oxygen is the consequence of 

inadequate oxygen delivery via inefficient tumor 

vasculature
[1]

. Hypoxia affects tumor behavior and 

facilitates tumor progression and metastasis, leading to 

resistance to conventional chemo- and radiotherapy
[2]

. 

Therefore, identifying the key genes regulating cancer 

cell behavior during hypoxia is essential for developing 

anticancer agents that efficiently kill tumor cells under 

hypoxic conditions. 

A growing number of studies have identified DEGs 
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during hypoxia in different cancer cell types using 

RNA-Seq analysis
[3-5]

. However, their findings only 

represent the genetic characteristics of specific tumor 

cells during hypoxia. In this study, we used RNA-Seq 

datasets of nine different hypoxic-conditioned cancer 

cell lines to find hypoxia-related mRNA signatures. 

Since human cancer cell lines are widely used for 

better understanding of cancer biology, cancer cell 

characterization, and anticancer drug discovery
[6]

, we 

selected the available RNA-Seq datasets of cell lines to 

explore the effect of hypoxia on gene expression 

profiles.  

MiRNAs play a central role in regulating gene 

expression
[7]

. Kulshreshtha and colleagues
[8]

 described 

a functional link between hypoxia and miRNA 

expression. They indicated that miRNAs profile are 

regulated by hypoxia in a variety of cell types, and 

their dysregulation is associated with many cancers, 

making their signature a potential prognostic 

biomarker
[9]

. In the present study, common DEGs 

along with their hub genes among the nine different 

cancer cell lines were screened during hypoxia. Then 

we investigated a PPI network and predicted a 

miRNA-targeted gene network, which might provide a 

basis for further studies. Our aim was to discover the 

molecular mechanism underlying the effect of hypoxia 

and provide potential prognostic markers. 

 

 
MATERIALS AND METHODS 

 
Raw biological data and differential RNA 

expression analysis  
Raw RNA-Seq data of nine hypoxia-conditioned 

cancer cell lines were retrieved from the Sequence 

Read Archive (www.ncbi.nlm.nih.gov/geo). Among 

these datasets, GSE131378 contained four samples of 

hypoxic-conditioned and four samples of normoxic-

conditioned A549 cells, while GSE72437 consisted of 

five samples of hypoxic-conditioned and five samples 

of normoxic-conditioned BeWo cells. Moreover, 

GSE78025, GSE81513, GSE84167, GSE13967, 

GSE149132, and GSE160491 contained three samples 

of hypoxic-conditioned and also three samples of 

normoxic-conditioned U78-MG, HCT116, MCF-7, 

ASPC-1, T47D, and BCPAP, respectively. GSE131379 

also comprised of two samples of hypoxic-conditioned 

and three samples of normoxic-conditioned Hela cells. 

SAMtools was used to extract raw sequencing reads. 

The read quality was examined using FastQC version 

0.11.2, and low quality bases and adaptor sequences 

were removed using Trimmomatic version 0.32; the 

expression level of each transcript was then quantified 

in transcripts per million using Kallisto
[10]

. The counts 

were imported into software R v. 3.4.0 using the 

tximport R package v. 1.4.0, and the DEGs were 

identified with a | log2 fold change | ≥1 and a false 

discovery rate  <0.05 using the DESeq2 package in R 

v. 3.2.3. The UpSetR package in R was employed to 

find common genes between different datasets
[11]

. The 

default values were employed for all the packages. 
 

Function enrichment analysis 
We used Database for Annotation, Visualization, and 

Integrated discovery (DAVID) (https://david.ncifcrf. 

gov/; version 6.8) for GO functional analysis and 

KEGG pathway analysis of DEGs
[12-14]

. The 

Evolutionary Relationships (PANTHER) was also used 

to determine protein class over-representation
[15]

, and  

p < 0.05 represented statistical significance.  
 

Construction of a PPI network  

Interactions between the common DEGs and other 

proteins would be useful to fully understand their 

biological roles. In this study, 23 common DEG PPI 

network were constructed by Retrieval of Interacting 

Genes (STRING; https://string-db.org/). Moreover, 23 

common DEGs were integrated into the International 

Molecular Exchange Consortium database (https:// 

www.imexconsortium.org/) to identify the hub genes 

information in PPI network
[16]

. The protein interaction 

network was visualized using NetworkAnalyst 

(https://www.networkanalyst.ca) and Cytoscape 

(3.9.1)
[16]

. To evaluate the nodes in the PPI network, 

we adopted several topological measures, including 

degree (k), MCC, BC, and CC. Since degree (k), BC, 

and MCC are often used for detecting the hub in a 

network
[17-19]

, we determined hub genes based on 

connectivity degree (number of interactions) >10, 

MCC, and BC using Cytohubba on Cytoscape.  
 

MiRNA interactions analysis 

To identify the miRNA-mRNA target interactions, 

miRTarBase
[20]

 and TarBase
[21]

 (both version 8.0) were 

employed to collect the miRNA-gene interaction data. 

Topological analysis based on degree and betweenness 

centrality as key topological parameters was performed 

utilizing NetworkAnalyst.  
 

 Cell culture for qRT-PCR validation 
To validate our findings, we selected four hub genes, 

including GAPDH, LRP1, ALDOA, and PLOD2 to 

determine their expression in cancer cell lines (A549, 

U78-MG, HCT116, Hela, and MCF-7) under hypoxic 

or normoxic conditions. Cells were purchased from the 

National Cell Bank of Iran (Pasteur Institute, Tehran, 

Iran). Cells used in the experiment were cultured in 

DMEM supplemented with 10% FBS and incubated in 

a humidified incubator with 5% CO2 at 37
 
°C. 
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Cancer cell adaptation to hypoxia 
Cells were seeded in a T25 flask and cultured in 

DMEM medium supplemented with 10% FBS. The 

cells were repeatedly incubated in hypoxic conditions 

in an Anoxomat chamber (Mart Microbiology, 

Lichtenvoorde, The Netherland; 1% O2) for 4 h and 

then incubated in a standard culture environment (5% 

CO2 and 95% air) at 37 °C for 48-72 h. Cells were 

treated twice weekly, and hypoxic-conditioned cell 

lines were generated after 20 exposures to hypoxia
[22]

.   

 

RNA isolation and qRT-PCR 
Trizol reagent (TaKara, Kusatsu, Shiga, Japan) was 

used for RNA isolation from the cells during normoxia 

and hypoxia. RNA samples were reversely transcribed 

to complementary DNA by the QIAGEN Reverse 

Transcription Kit (Qiagen, Germany). Subsequently, 

the quantification of cDNA was performed by the qRT-

PCR method using SYBR Green Master Mix 

(Amplicon). The reaction conditions were conducted at 

95 °C for 10 min, 40 cycles of 95 °C for 10 s, 60 °C for 

30 s, and 72 °C for 30 s. The RPLP0 was used as an 

internal reference control
[23]

. Gene expression levels 

were calculated based on the Delta-Delta Ct relative 

quantification.  

 

Statistical analysis 
Statistical analyses were performed using the 

student’s t-test with GraphPad Prism 8 software 

(GraphPad Prism, San Diego, CA, USA). The p value 

was considered statistically significant when it was less 

than 0.05. 

 

RESULTS 

 

Differential RNA expression analysis 
RNA sequencing data from the nine different 

hypoxic-conditioned cancer cell lines (A549, BeWo, 

U78-MG, HCT116, Hela, MCF-7, ASPC-1, T47D, and 

BCPAP) were analyzed, and 23 common DEGs were 

identified (Fig. 1), including EGLN3, ANGPTL4, 

GPR146, C4orf47, KCTD11, CA9, PPFIA4, PLOD2, 
HK2, and TMEM. Interestingly, all of these genes were 

upregulated in the hypoxic-conditioned cancer cell 

lines. 

 

Functional categories and pathway analysis 
The PANTHER protein classification revealed that 

the common DEGs were classified into nine groups 

according to their function: protein modifying enzyme 

(PPFIA4, PDK1, and PLOD2), scaffold/adaptor 

protein (KCTD11), transfer/carrier protein (LRP1), 

transmembrane signal receptor (GPR146), cytoskeletal 

protein (HK2),  extracellular matrix protein (EFEMP2), 

intercellular signal molecule (ANGPTL4), metabolite 

interconversion enzyme (FUT11, GAPDH, QSOX1, 

PFKFB4, ALDOA, and HK2), and regulatory protein 

(KDM3A). GO analysis, which covered the three GO 

categories (i.e. CC, BP, and MF), was performed using 

DAVID. DEGS were enriched significantly in different

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. UpSet plot of DEGs. (A) Total number of DEGs during hypoxia; (B) intersection of gene sets in hypoxic conditions. Black 

circles indicate the total number of DEGs with differences in log2 fold change expression in each dataset, and connecting bars show 

the overlapping DEGs.  
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GO terms, including hexose metabolic process 

(ontology: BP), monosaccharide binding (ontology: 

MF), and mitochondrial pyruvate dehydrogenase 

complex (ontology: CCO); the results are summarized 

in Table 1. The significance threshold of p < 0.05 was 

selected. Moreover, seven pathways were significantly 

enriched based on KEGG pathway analysis, including 

HIF-1 signaling pathway, fructose and mannose 

metabolism, glycolysis/gluconeogenesis, carbon 

metabolism, cholesterol metabolism, central carbon 

metabolism in cancer, and biosynthesis of amino acids 

(Table 2). 

 

PPI network construction and hub gene selection 
  Using the STRING database, a PPI network obtained 

from 23 common DEGs, which was composed of 22 

nodes and 25 edges, was constructed and visualized in 

Cytoscape (Supplementary Fig. 1). In order to screen 

the PPI network’s interactions with other proteins, 

which provide important clues about their functions, 

the PPI network was integrated into the International 

Molecular Exchange Consortium database. A PPI 

network composed of 448 nodes and 531 edges was 

obtained (Fig. 2). Twelve hub proteins, including 

GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, CA9, 

EGLN3, HK, PDK1, KDM3A, UBC, and P4HA1, were 

identified in this network based on degrees (>10), 

MCC, and BC (Fig. 3 and Table 3).  

 

Gene regulatory network analysis  

The key miRNAs (miR-335-5p, miR-122-5p, miRr-

6807-5p, miR-1915-3p, miR-6764-5p, mirR-92-3p, 

miR-23b-3p, miR-615-3p, miR-124-3p, miR-484, and 

miR-455-3p) were identified based on network 

topological properties (degree and betweenness 

centrality). Additionally, our results indicate miR-92-

3p can regulate a large number of mRNA targets 

(n = 88), as shown by the PPI network (Fig. 4).

 
 
 

    Table 1. Top 10 GO analyses of the differentially expressed genes identified from RNA-Seq data of hypoxic-conditioned 

cell lines  

Category GO ID Term p value 

Biological process 

 

 

 

 

 

0019318 Hexose metabolic process 0.00067 

0001666 Response to hypoxia 0.0011 

0006006 Glucose metabolic process 0.0011 

0006735 NADH regeneration 0.0011 

0009435 NAD biosynthetic process 0.0011 

0018126 Protein hydroxylation 0.0011 

0018401 Peptidyl-proline hydroxylation to 4-hydroxy-L-proline 0.0011 

0042866 Pyruvate biosynthetic process 0.0011 

0055114 Oxidation-reduction process 0.0011 

0061621 Canonical glycolysis 0.0011 

    

 

Molecular function 

 

 

 

 

 

0048029 Monosaccharide binding 2.18E-06 

0031418 L-ascorbic acid binding 0.00017 

0051213 Dioxygenase activity 0.00017 

0005506 Iron ion binding 0.00062 

0016706 2-oxoglutarate-dependent dioxygenase activity 0.00062 

0031545 Peptidyl-proline 4-dioxygenase activity 0.00099 

0016491 Ooxidoreductase activity 0.002 

0050662 Coenzyme binding 0.0038 

0019200 Carbohydrate kinase activity 0.0044 

0048037 Cofactor binding 0.0191 

    

Cellular component 

 

 

 

 

 

0005967 Mitochondrial pyruvate dehydrogenase complex 0.00581 

1990204 Oxidoreductase 0.00747 

0070820 Tertiary granule 0.0158 

0016323 Basolateral plasma membrane 0.0289 

0009925 Basal plasma membrane 0.0349 

0045178 Basal part of cell 0.0398 

0005813 Centrosome 0.0348 

0099512 Supramolecular fibre 0.0275 

0099081 Supramolecular polymer 0.0282 

0005856 Cytoskeleton 0.0482 

        p  < 0.05 considered significant 
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                                  Table 2. The KEGG pathway analysis of the overlapping DEGs associated with hypoxia 

Category Pathways count p value 

KEGG HIF-1 signalling pathway 5 2.41E-06 

 Fructose and mannose metabolism 3 0.00012 

 Glycolysis/gluconeogenesis 3 0.0006 

 Carbon metabolism 3 0.0021 

 Cholesterol metabolism 2 0.0077 

 Central carbon metabolism in cancer 2 0.0115 

 Biosynthesis of amino acids 2 0.0119 
 

 

 

Quantitative real-time PCR for DEGs 

 In order to validate the DEGs identified by RNA-seq 

analysis, four hub genes, including GAPDH, LRP1, 

ALDOA, and PLOD2, were selected for analysis via 

qRT-PCR under normoxic and hypoxic conditions. 

Primers were designed based on available sequences to 

amplify the specific altered genes. Primer sequences 

are shown in Table 4. Based on the qRT-PCR results, 

the candidate genes were upregulated in A549, U78-

MG, HCT116, Hela, and MCF-7 cells under hypoxic 

conditions (Fig. 5). The expression profiles of four 

genes confirmed the original transcriptome data 

obtained by RNA-Seq.  
 

 

DISCUSSION 

 

Because hypoxic cells are likely to be resistant to 

chemo- and radiotherapy, it is of high importance to 

identify the key hypoxia-inducible genes and resistance 

mechanisms for efficient therapeutic intervention. 

Moreover, it is well established that miRNA plays a 

central role in regulating the various biological 

pathways
[24]

. Therefore, exploring the role and impact 

of mRNA and miRNA in cancer cells, especially 

during hypoxia, could be helpful in cancer diagnosis 

and treatment.  

In the current study, we conducted bioinformatics 

analysis to identify the candidate key genes and 

biological pathways among nine different cancer cell 

lines exposed to hypoxic conditions. Data was 

extracted from GSE131378, GSE72437, GSE78025, 

GSE81513, GSE131379, GSE84167, GSE13967, 

GSE149132, and GSE160491 datasets, among which 

23 common DEGs were screened. To our surprise, all 

the common DEGs were upregulated in all the nine 

hypoxic-conditioned cancer cell lines. In order to gain 

some insight into how hypoxia affects the expression 

of genes at the molecular level, GO and KEGG 

pathway enrichment analyses were carried out
[13,14]

. 

Functional enrichment analysis revealed that the 

hexose  metabolic  process,  response  to  hypoxia,  and 

glucose metabolic process were significantly changed. 

According to KEGG enrichment analysis, 23 common 

genes were enriched in the HIF-1 signaling pathway, 

including fructose and mannose metabolism, 

glycolysis/gluconeogenesis, carbon metabolism, 

cholesterol metabolism, central carbon metabolism in 

cancer, and biosynthesis of amino acids. Since it is 

believed that proteins with more interactions have 

higher chances of being involved in the essential 

PPI
[25]

, the PPI network was constructed and GAPDH, 

LRP1, ALDOA, EFEMP2, PLOD2, CA9, EGLN3, HK, 

and PDK1 were identified as the hub genes.  

To support our findings, we selected four hub genes 

(GAPDH, LRP1, ALDOA, and PLOD2) for qRT-PCR 

validation in A549, U78-MG, HCT116, Hela, and 

MCF-7 cells under normoxic and hypoxic conditions. 

Expression patterns of four genes generated by qRT-

PCR were consistent with RNA-seq data. Consistently, 

several studies have found that hypoxia-related genes 

such as GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, 

CA9, EGLN3, HK, and PDK1 are upregulated during 

hypoxia
[26-28]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. PPI network of common genes among nine different 

cell lines during hypoxia by mapping DEGs into the 

NetworkAnalyst database. Purple nodes represent the 23 

common DEGs, and the area of each circle demonstrates the 

degree of the node in the network. The color of nodes is 

proportional to their BC values. 
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Fig. 3. Results of algorithms from the Cytohubba. Hub genes were screened by degree, MCC, and BC according to the Cytohubba 

plug-in. Centrality in the network was measured by CC. The more forward ranking is represented by a redder color. 

  

 

 

 

 

    Table 3. Summary of the selected hub proteins based on degree, MCC, and BC in hypoxic-conditioned cell 

lines (A549, BeWo, U78-MG, HCT116, Hela, MCF-7, ASPC-1, T47D, and BCPA) 
 

Symbol Description Degree BC CC 

GAPDH Glyceraldehyde3-phosphate dehydrogenase 183 66486.07 273.75 

LRP1 Low density lipoprotein receptor-related protein 1 59 21784.76 186.65 

ALDOA Aldolase A 57 15174.48 189.15 

EFEMP2 EGF containing fibulin extracellular matrix protein 2 41 14612.74 160.2667 

PLOD2 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 40 14259.61 168.2833 

CA9 Carbonic anhydrase 9 30 10950.54 144.0333 

EGLN3 Egl nine homolog 3 25 7895 158.2833 

HK2 Hexokinase 2 22 7509.14 164.7833 

PDK1 Pyruvate dehydrogenase kinase 1 21 6557.02 156.65 

KDM3A Lysine demethylase 3A 15 4690.6 151.8667 

UBC Ubiquitin C 13 22879.18 212.3667 

P4HA1 Prolyl 4-Hydroxylase Subunit Alpha 1 11 3109.74 149.9833 
 

                Since there is no edge between the neighbors of the node, the MCC is equal to its degree. 

 

 

 

 

MCC 
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Fig. 4. Network analysis of DEG-miRNA interactions. 

NetworkAnalyst was used to visualize data obtained from the 

miRTarBase and TarBase databases. Blue squares represent 

microRNAs, and red circles represent genes. The area of each 

circle demonstrates the degree of the node in the network. The 

color of nodes is proportional to their BC values. 
 

 

GAPDH and ALDOA are involved in glycolysis. It is 

widely believed that the overexpression of glycolytic 

enzymes in a large number of tumors compensates for 

the increased energy demands and supports rapid 

tumor growth
[29]

. However, many glycolytic enzymes 

have non-glycolytic functions, as well
[30]

. For instance, 

overexpressed GAPDH could inhibit caspase-

independent cell death by inducing Bcl-xL 

upregulation, leading to cancer cell survival and 

resistance to chemotherapeutic agents
[31,32]

.  Moreover, 

GAPDH protects cancer cells against chemotherapy by 

directly binding to the telomeric DNA and prevents the 

rapid degradation of telomeres
[33]

. More importantly, 

GAPDH, which is perceived as a common reference 

gene, is upregulates under hypoxic conditions. 

Therefore, using GAPDH as a housekeeping gene 

should be avoided due to its unstable expression level 

during hypoxia.  

ALDOA and PDK1 are glycolytic enzymes  

that contribute to the progress of cancer and 

metastasis
[34-37]

. ALDOA overexpression could 

suppress the expression of proteins responsible for cell-

cell adhesion and induce the expression of epithelial-

mesenchymal transition
[34]

. Chang et al.
[34]

 have 

demonstrated a feedback loop between ALDOA and 

HIF-1, by which ALDOA activates HIF-1α/MMP9 and 

promotes cancer cell invasion. Under hypoxic 

conditions, PDK1 attenuates mitochondrial respiration 

and ROS production by inactivating the pyruvate 

dehydrogenase
[38]

. Additionally, Gibadulinova et al.
[39]

 

have indicated that carbonic anhydrase IX promotes 

metabolic adaptation to hypoxia through the regulation 

of PDK1. A number of studies have also revealed that 

PDK1 overexpression promotes cancer cell metastasis, 

but the molecular mechanism is unclear
[36,37]

. Siu et 

al.
[37] 

have explained that PDK1 expression is 

associated with ovarian cancer metastasis through the 

activation of JNK/IL-8 signaling. It has also been 

displayed that procollagen-lysine, 2-oxoglutarate, 

PLOD2 promotes migration and invasion of cancer 

cells during hypoxia. PLOD2, a regulator of collagen 

cross-linking, is located in the upstream of HK2 and 

can regulate HK2 expression through the activation of 

signal transducer and activator of transcription 3 

(STAT3)
[40]

.  

To predict the correlation of common DEGs with 

miRNA, a DEG-miRNA network was constructed 

(Fig. 3). These miRNAs have been reported in some 

cancer types. We also identified miR-335-5p, miR-

122-5p, miR-6807-5p, miR-1915-3p, miR-6764-5p, 

miR-92-3p, miR-23b-3p, miR-615-3p, miR-124-3p, 

miR-484, and miR-455-3p as the key interacting 

miRNAs in hypoxia in different cancer cell lines.  The 

miR-335-5p has been exhibited to have ability to 

regulate cancer cell metastasis. Zhang et al.
[41]

 showed 

that miR-335-5p can promote apoptosis in prostate 

cancer cells and may be used as a biomarker in the 

treatment of this disease
[41,42]

. Upregulation of miR-

6807-5p was reported in glioma specimens
[43]

. 

Dysregulation of miR-6764-5p was also identified in 

pituitary adenomas
[44]

. MiR-92-3p and miR-122-5p 

have been identified as the markers of hypoxic 

environments. MiR-92-3p can be used as a potential 

therapeutic target  in patients with metastatic colorectal  

 

 
 

  Table 4. PCR primers used for the validation of gene 

expression by qRT-PCR 

Gene-specific 

primers 
Oligonucleotide primer sequence 5' to 3' 

RPLP0 
F: CCATTCTATCATCAACGGGTACAA 

R: TCAGCAAGTGGGAAGGTGTAATC 

  

GAPDH 
F: GCCATCAATGACCCCTTCAT 

R: GCCATGGAATTTGCCAT 

  

LRP1 
F: CAACGGCATCTCAGTGGACTAC 

R: TGTTGCTGGACAGAACCACCTC 

  

ALDOA 
F: GACACTCTACCAGAAGGCGGAT 

R: GGTGGTAGTCTCGCCATTTGTC 

  

PLOD2 
F: GACAGCGTTCTCTTCGTCCTCA 

R: CTCCAGCCTTTTCGTGGTGACT 
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Fig. 5. The mRNA expression of GAPDH, LRP1, ALDOA, and PLOD2 in A549, U78-MG, HCT116, MCF-7, and Hela cells under 

normoxic and hypoxic conditions analyzed by qRT-PCR. Gene expression levels were calculated based on Delta-delta Ct relative 

quantification. The data represents at least two biological replicates, each of which was run in triplicate (*p < 0.05; **p < 0.01).  

 

 

cancer
[45,46]

.  MiR-455-5p   is   dysregulated   in   many 

tumor cells
[47,48]

, while miR-1915-3p and miR-124-3p 

could inhibit apoptosis, resulting in cancer progression. 

It has been
 
exhibited that miR-1915-3p may play a role 

in the progression of gastric cancer and may have a 

potential therapeutic application in gastric cancer
[49,50]

. 

Contradictorily, miR-484 could promote apoptosis by 

targeting Apaf-1
[51]

, and miR-23b-3p and miR-615-3p 

could act as either tumor suppressors or oncogenes, 

which mainly depends on their context
[52,53]

. 

In summary, the present study identified hypoxia-

related gene signatures among the hypoxia-conditioned 

cancer cell lines using RNA-Seq. Our analysis revealed 

the common hub genes and key pathways in cancer 

cells under hypoxic conditions. Moreover, we 

predicted a miRNA signature, among which miR-335-

5p had the highest betweenness centrality during 

hypoxia. To our knowledge, for the first time, our 

results demonstrate that miR-6807-5p and miR-6764-

5p are dysregulated under hypoxic conditions. 

However, further molecular biological experiments are 

required to confirm the function of the identified 

miRNA associated with hypoxia. The results of the 

present study may provide future directions in 

identifying the presence of cancer and determining the 

characteristics of cancer. For instance, hypoxia is a 

characteristic feature of cancer, and the hypoxia 

signature identified in this study, as well as predicted 

miRNAs might be helpful to detect the hypoxic state of 

cancer cells. Hypoxia is common in majority of 

malignant tumors and an attractive therapeutic target. 

As hypoxia targeted treatment are effective in patients 

with the most hypoxic tumors, hypoxic signature might 

be useful for developing proper treatment, such as 
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engineered oncolytic viruses that could be utilized to 

control or regulate the biological interactions 

responsible for the functioning or malfunctioning of 

cancer cells during hypoxia
[22]

. 
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