Volume 26, Issue 6 (10-2022)                   IBJ 2022, 26(6): 414-425 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pouri S, Torkashvand F, Aghamirza Moghim Aliabadi H, Fard-Esfahani P, Golkar M, Vaziri B. Quality by Design in Downstream Process Development of Romiplostim. IBJ 2022; 26 (6) :414-425
URL: http://ibj.pasteur.ac.ir/article-1-3790-en.html
Abstract:  
Background: Downstream processing of therapeutic recombinant proteins expressed as the inclusion bodies (IBs) in E. coli is quite challenging. This study aimed to use the quality by design approach for developing the multi-step downstream process of a structurally complex therapeutic Fc-Peptide fusion protein, romiplostim.
Methods: For development of a successful downstream process, risk analysis and experimental designs were used to characterize the most critical quality attributes (CQAs) and effects of process parameters on these quality attributes.
Results: The solubilization of IBs was optimized by design of experiment on three parameters with a focus on solubility yield, which resulted in >75% increase of the target protein solubilization. The pH of sample was identified as CQA in anion exchange chromatography that might have an impact on achieving >85% host cell proteins removal and >90% host cell DNA reduction. In the refolding step, process parameters were screened. Cystine/cysteine ratio, pH, and incubation time identified as CPPs were further optimized using Box-Behnken analysis, which >85% of the target protein was refolded. The design space for further purification step by HIC was mapped with a focus on high molecular weight impurities. After polishing by gel filtration, the final product's biological activity showed no statistically significant differences among the groups received romiplostim and Nplate®, as the reference product.
Conclusion: This research presents a precise and exhaustive model for mapping the design space in order to describe and anticipate the link between the yield and quality of romiplostim and its downstream process parameters.
Type of Study: Full Length | Subject: Pharmaceutical Biotechnology

References
1. Nadpara NP, Thumar RV, Kalola VN, Patel PB. Quality by design (QBD): A complete review. International journal of pharmaceutical sciences review and research, 2012; 17(2): 20-28.
2. Grangeia HB, Silva C, Paulo Simões S, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. European journal of pharmaceutics and Biopharmaceutics 2020; 147: 19-37. [DOI:10.1016/j.ejpb.2019.12.007]
3. Miao S, Xie P, Zou M, Fan L, Liu X, Zhou Y, Zhao L, Ding D, Wang H, Tan WS. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Applied microbiology and biotechnology 2017; 101(14): 5627-5638. [DOI:10.1007/s00253-017-8301-x]
4. Metzger KF, Padutsch W, Pekarsky A, Kopp J, Voloshin AM, Kühnel H, Maurer M. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations. Journal of biotechnology 2020; 312: 23-34. [DOI:10.1016/j.jbiotec.2020.02.014]
5. Rathore AS. Quality by Design (QbD)-based process development for purification of a biotherapeutic. Trends in biotechnology 2016; 34(5): 358-370. [DOI:10.1016/j.tibtech.2016.01.003]
6. Pauk JN, Palanisamy JP, Kager J, Koczka K, Berghammer G, Herwig C, Veiter L. Advances in monitoring and control of refolding kinetics combining PAT and modeling. Applied microbiology and biotechnology 2021; 105(6): 1-18. [DOI:10.1007/s00253-021-11151-y]
7. Jiang C, Flansburg L, Ghose S, Jorjorian P, Shukla AA.Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles. Biotechnology and bioengineering 2010; 107(6): 985-997. [DOI:10.1002/bit.22894]
8. Parameswaran R, Lunning M, Mantha S, Devlin S, Hamilton A, Schwartz G, Soff G. Romiplostim for management of chemotherapy-induced thrombo- cytopenia. Supportive care in cancer 2014; 22(5): 1217-1222. [DOI:10.1007/s00520-013-2074-2]
9. Elder D, Teasdale A. ICH Q9 quality risk management. In: Teasdale A, Elder D, Nims RW. ICH Quality Guidelines: An Implementation Guide 2017; 579-610. [DOI:10.1002/9781118971147.ch21]
10. Froger A, Hall JE. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of visualized experiments 2007; 6: 253. [DOI:10.3791/253]
11. Fayaz S, Fard-Esfahani P, Golkar M, Allahyari M, Sadeghi S. Expression, purification and biological activity assessment of romiplostim biosimilar peptibody. DARU journal of pharmaceutical sciences 2016; 24(1): 1-5. [DOI:10.1186/s40199-016-0156-7]
12. Jensen EC. The basics of western blotting. Anatomical recordy 2012; 295(3): 369-371. [DOI:10.1002/ar.22424]
13. Singh A, Upadhyay V, Kumar Upadhyay A, Mohan Singh S, Kumar Panda A. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial cell factories 2015; 14(1): 1-10. [DOI:10.1186/s12934-015-0222-8]
14. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WLN. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta 2007; 597(2): 179-186. [DOI:10.1016/j.aca.2007.07.011]
15. Harinarayan C, Mueller J, Ljunglöf A, Fahrner R, Van Alstine J, van Reis R. An exclusion mechanism in ion exchange chromatography. Biotechnology and bioengineering 2006; 95(5): 775-787. [DOI:10.1002/bit.21080]
16. Analytical Methods Committee Amctb No. 55, Experimental design and optimisation (4): Plackett- Burman designs. Analytical methods 2013; 5(8): 1901-1903. [DOI:10.1039/C3AY90020G]
17. Jungbauer A. Kaar W. Current status of technical protein refolding. Journal of biotechnology 2007; 128(3): 587-596. [DOI:10.1016/j.jbiotec.2006.12.004]
18. Vincentelli R, Canaan S, Campanacci V, Valencia C, Maurin D, Frassinetti F, Scappucini-Calvo L, Bourne Y, Cambillau C, Bignon C. High-throughput automated refolding screening of inclusion bodies. Protein science 2004; 13(10): 2782-2792. [DOI:10.1110/ps.04806004]
19. Shukla AA, Peterson J, Sorge L, Lewis P, Thomas S, Waugh S. Preparative purification of a recombinant protein by hydrophobic interaction chromatography: modulation of selectivity by the use of chaotropic additives. Biotechnology progress 2002; 18(3): 556-564. [DOI:10.1021/bp020038a]
20. Li JJ, Liu YD, Wang FW, MA GH, Zu ZG. Hydrophobic interaction chromatography correctly refolding proteins assisted by glycerol and urea gradients. Journal of chromatography A 2004; 1061(2): 193-199. [DOI:10.1016/j.chroma.2004.11.002]
21. Fukuda IM, Fidelis Pinto CF, dos Santos Moreira C, Morais Saviano A. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazilian journal of pharmaceutical sciences 2018; Available at https://doi.org/10.1590/s2175-97902018000001006 [DOI:10.1590/ s2175-97902018000001006.]
22. Grangeia HB, Silva C, Paulo Simões S, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. European journal of pharmaceutics and biopharmaceutics 2020; 147: 19-37. [DOI:10.1016/j.ejpb.2019.12.007]
23. Ferreira AP, Tobyn M. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era. Pharmaceutical development and technology 2015; 20(5): 513-527. [DOI:10.3109/10837450.2014.898656]
24. Zou Q, Habermann Rottinghaus SM, Murphy KP. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins: structure, function, and bioinformatics 1998; 31(2): 107-115. https://doi.org/10.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J [DOI:10.1002/(SICI)1097-0134(19980501)31:23.0.CO;2-J]
25. Upadhyay AK, Singh A, Mukherjee KJ, Panda AK. Refolding and purification of recombinant L- asparaginase from inclusion bodies of E. coli into active tetrameric protein. Frontiers in microbiology 2014; 5: 486. [DOI:10.3389/fmicb.2014.00486]
26. Mechin V, Consoli L, Le Guilloux M, Damerval C. An efficient solubilization buffer for plant proteins focused in immobilized pH gradients. Proteomics 2003; 3(7): 1299-1302. [DOI:10.1002/pmic.200300450]
27. Freydell EJ, Ottens M, Eppink M, van Dedem G, van der Wielen L. Efficient solubilization of inclusion bodies. Biotechnology journal 2007; 2(6): 678-684. [DOI:10.1002/biot.200700046]
28. Stone MC, Borman J, Ferreira G, Robbins D. Effects of pH, conductivity, host cell protein, and DNA size distribution on DNA clearance in anion exchange chromatography media. Biotechnology progress 2018; 34(1): 141-149. [DOI:10.1002/btpr.2556]
29. Bade PD, Kotu SP, Rathore AS, Optimization of a refolding step for a therapeutic fusion protein in the quality by design (QbD) paradigm. Journal of separation science 2012; 35(22): 3160-3169. [DOI:10.1002/jssc.201200476]
30. Wang Y, van Oosterwijk N, Ali AM, Adawy A, Anindya AL, Dömling ASS, Groves MR. A systematic protein refolding screen method using the DGR approach reveals that time and secondary TSA are essential variables. Scientific reports 2017; 7(1): 1-10. [DOI:10.1038/s41598-017-09687-z]
31. Tiwari K, Shebannavar S, Kattavarapu K, Pokalwar S,Mishra MK, Kumari Chauhan U. Refolding of recombinant human granulocyte colony stimulating factor: Effect of cysteine/cystine redox system. Indian journal of biochemistry and biophysics 2012; 49(4): 285-288.
32. Li Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein expression and purification 2017; 134: 96-103. [DOI:10.1016/j.pep.2017.04.006]
33. Li JJ, Liu YD, Wang FW, Ma GH, Su ZG. Hydrophobic interaction chromatography correctly refolding proteins assisted by glycerol and urea gradients. Journal of chromatography A 2004; 1061(2): 193-199. [DOI:10.1016/j.chroma.2004.11.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb