Volume 27, Issue 1 (1-2023)                   IBJ 2023, 27(1): 34-45 | Back to browse issues page

PMID: 36624687

XML Print

Background: The p53 mutation is uncommon in Epstein–Barr virus-linked gastric carcinoma, but its suppression occurs through mechanisms such as ubiquitin specific peptidase 7 (USP7) inhibitions via Epstein–Barr virus nuclear antigen-1 (EBNA1) activity. This study aimed to evaluate the effect of EBNA1 on p53-inhibiting gene expression and the impact of USP7 inhibition on p53 suppression.
Methods: MKN-45 cells were transfected with the EBNA1 plasmid. A stable EBNA1 expression cell line was developed through selection based on hygromycin B resistance. Murine double minute (MDM)4, MDM2, sirtuin (SIRT)3, histone deacetylase (HDAC)1, proteasome 26S subunit, Non-ATPase (PSMD)10, USP7, and p53 expression were checked using real-time PCR. Also, cells containing EBNA1 or control plasmid were treated with GNE-6776, and the expression of the interested genes and cell survival were assessed.
Results: MDM4, MDM2, and PSMD10 were significantly upregulated in the MKN-45 cell line following EBNA1 transfection. Morphological changes were observed in the cells harboring EBNA1 after 20 days. In the control cells, USP7 inhibition significantly upregulated the HDAC1, PSMD10, MDM4, and MDM2 genes after 24 h, but downregulated these genes after four days. In the EBNA1-harboring cells, MDM2, MDM4, and PSMD10 genes were significantly upregulated after 24 h, and this effect was sustained for all genes except for MDM4, even after four days. Furthermore, USP7 inhibition induced apoptosis in both cell groups.
Conclusion: EBNA1 enhances the expression of p53-inhibiting genes. Two events—p53 protein overexpression and apoptosis activation—followed the suppression of the USP7 protein and provided evidence for its possible function. The significance of the EBNA1-USP7 interaction in p53 suppression warrants additional investigation and possibly reconsideration.

Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nature reviews cancer 2016; 16(12): 789-802. [DOI:10.1038/nrc.2016.92]
2. Worth AJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. British journal of haematology 2016; 175(4): 559-576. [DOI:10.1111/bjh.14339]
3. Lindner SE, Sugden B. The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 2007; 58(1): 1-12. [DOI:10.1016/j.plasmid.2007.01.003]
4. Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. in Seminars in immunopathology 2020; 42(2): 131-142. [DOI:10.1007/s00281-020-00792-2]
5. Bass AJ. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513(7517): 202. [DOI:10.1038/nature13480]
6. Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal transduction and targeted therapy 2021; 6(1): 1-33. [DOI:10.1038/s41392-020-00376-4]
7. Chatterjee K, Das P, Roy Chattopadhyay N, Mal S, Choudhuri T. The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5(11): e02624. [DOI:10.1016/j.heliyon.2019.e02624]
8. Jiang L, Xie C, Lok Lung H, Wai Lo K, Law GL, Mak NK, Wong KL. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics 2018; 8(19): 5307. [DOI:10.7150/thno.26823]
9. Wood V, O'Neil J D, Wei W, Stewart S E, Dawson C W, Young L S. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGF β signaling pathways. Oncogene 2007; 26(28): 4135-4147. [DOI:10.1038/sj.onc.1210496]
10. Sompallae R, Callegari S, Akbari Kamranvar S, Masucci MG. Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes. PloS one 2010; 5(8): e12052. [DOI:10.1371/journal.pone.0012052]
11. Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. Targeting USP7-mediated deubiquitination of MDM2/MDMX-p53 pathway for cancer therapy: are we there yet? Frontiers in cell and developmental biology 2020; 8: 233. [DOI:10.3389/fcell.2020.00233]
12. Colland F, Formstecher E, Jacq X, Reverdy C, Planquette C, Conrath S, Trouplin V, Bianchi J, Aushev VN, Camonis J, Calabrese A, Borg-Capra K, Sippl W, Collura V, Boissy G, Rain JC, Guedat P, Delansorne R, Daviet L. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cellsInhibitor of HAUSP/USP7 Deubiquitinating Activity. Molecular cancer therapeutics 2009; 8(8): 2286-2295. [DOI:10.1158/1535-7163.MCT-09-0097]
13. Schauer NJ, Liu X, Magin RS, Doherty LM, Cheung Chan W, Ficarro SB, Hu W, Roberts RM, Iacob RE, Stolte B, Giacomelli AO, Perera S, McKay K, Boswell SA, Weisberg EL, Ray A, Chauhan D, Dhe-Paganon S, Anderson KS, Griffin JD, Li J, Hahn WC, Sorger PK, Engen JR, Stegmaier K, Marto JA, Buhrlage SJ. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Scientific reports 2020; 10(1): 1-15. [DOI:10.1038/s41598-020-62076-x]
14. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. The international journal of biochemistry and cell biology 2007; 39(7-8): 1476-1482. [DOI:10.1016/j.biocel.2007.03.022]
15. Kashyap D, Varshney N, Singh Parmar H, Chandra Jha H. Gankyrin: At the crossroads of cancer diagnosis, disease prognosis, and development of efficient cancer therapeutics. Advances in cancer biology-metastasis 2021; 4: 100023. [DOI:10.1016/j.adcanc.2021.100023]
16. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000; 408(6810): 377-381. [DOI:10.1038/35042612]
17. Chen J, Wang A, Chen Q. SirT3 and p53 deacetylation in aging and cancer. Journal of cellular physiology 2017; 232(9): 2308-2311. [DOI:10.1002/jcp.25669]
18. Dowran R, Sarvari J, Moattari A, Fattahi MR, Ramezani A, Hosseini SY. Analysis of TLR7, SOCS1 and ISG15 immune genes expression in the peripheral blood of responder and non-responder patients with chronic Hepatitis C. Gastroenterology and hepatology from bed to bench 2017; 10(4): 272.
19. Ramezani A, CtNorm: Real time PCR cycle of threshold (Ct) normalization algorithm. Journal of microbiological methods 2021; 187: 106267. [DOI:10.1016/j.mimet.2021.106267]
20. Ribeiro J, Malta M, Galaghar A, Silva F, Pedro Afonso L, Medeiros R, Sousa H. P53 deregulation in epstein-barr virus-associated gastric cancer. Cancer letter 2017. 404: 37-43. [DOI:10.1016/j.canlet.2017.07.010]
21. Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, Zhang B, Dong Q, Sunwoo GB, Li G, Li XP. Epstein‐Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial‐mesenchymal transition in nasopharyngeal carcinoma cells. Cancer 2014; 120(3): 363-372. [DOI:10.1002/cncr.28418]
22. Saha, A., Jha HC, Upadhyay SK, Robertson ES. Epigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection. Proceedings of the national academy of sciences 2015; 112(37): E5199-E5207. [DOI:10.1073/pnas.1503806112]
23. Edwards, RH, Dekroon R, Raab-Traub N. Alterations in cellular expression in EBV infected epithelial cell lines and tumors. PLoS pathogens 2019; 15(10): e1008071. [DOI:10.1371/journal.ppat.1008071]
24. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP. MDM2-HDAC1‐mediated deacetylation of p53 is required for its degradation. The EMBO journal 2002; 21(22): 6236-6245. [DOI:10.1093/emboj/cdf616]
25. Torrens-Mas M, Oliver J, Roca P, Sastre-Serra J. SIRT3: oncogene and tumor suppressor in cancer. Cancers 2017; 9(7): 90. [DOI:10.3390/cancers9070090]
26. Yang M, Peng Y, Liu W, Zhou M, Meng Q, Yuan C. Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway. Biochemical and biophysical research communications 2019; 513(3): 616-622. [DOI:10.1016/j.bbrc.2019.03.200]
27. Botta G, De Santis LP, Saladino R. Current advances in the synthesis and antitumoral activity of SIRT1-2 inhibitors by modulation of p53 and pro-apoptotic proteins. Current medicinal chemistry 2012; 19(34): 5871-5884. [DOI:10.2174/092986712804143303]
28. AlQarni S, Al-Sheikh Y, Campbell D, Drotar M, Hannigan A, Boyle S, Herzyk P, Kossenkov A, Armfield K, Jamieson L, Bailo M, Lieberman PM, Tsimbouri P, Wilson JB. Lymphomas driven by Epstein-Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene 2018; 37(29): 3998-4012. [DOI:10.1038/s41388-018-0147-x]
29. Renouf B, Hollville E, Pujals A, Tétaud C, Garibal J, Wiels J. Activation of p53 by MDM2 antagonists has differential apoptotic effects on Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cells. Leukemia 2009; 23(9): 1557-1563. [DOI:10.1038/leu.2009.92]
30. Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY, Jiang S, Jiang C, Zhao B, Root DE, Doench JG, Gewurz BE. CRISPR/Cas9 screens reveal Epstein-Barr virus-transformed B cell host dependency factors. Cell host and microbe 2017; 21(5): 580-591. e7. [DOI:10.1016/j.chom.2017.04.005]
31. Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell cycle 2010; 9(3): 472-478. [DOI:10.4161/cc.9.3.10556]
32. Zhang X, Yamamoto Y, Wang X, Sato M, Imanishi M, Sugaya A, Hirose M, Endo S, Moriwaki T, Yamato K, Hyodo I. MDM4 as a prognostic factor for patients with gastric cancer with low expression of p53. Anticancer research 2021; 41(3): 1475-1483. [DOI:10.21873/anticanres.14906]
33. Dawson S, Higashitsuji H, Wilkinson AJ, Fujita J, John Mayer R. Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends in cell biology 2006; 16(5): 229-233. [DOI:10.1016/j.tcb.2006.03.001]
34. Kashyap D, Baral B, Jakhmola S, Kumar Singh A, Chandra Jha H. Helicobacter pylori and Epstein-Barr virus coinfection stimulates the aggressiveness in gastric cancer through the regulation of gankyrin. mSphere 2020; 6(5): e0075121. [DOI:10.1128/mSphere.00751-21]
35. Li H, Zhang J, Zhen C, Yang B, Feng L. Gankyrin as a potential target for tumor therapy: evidence and perspectives. American journal of translational research 2018; 10(7): 1949.
36. Ma J, Martin JD, Xue Y, Lor LA, Kennedy-Wilson KM, Sinnamon RH, Ho TF, Zhang G, Schwartz B, Tummino PJ, Lai Z. C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site. Archives of biochemistry and biophysics 2010; 503(2): 207-212. [DOI:10.1016/j.abb.2010.08.020]
37. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS biology 2006; 4(2): e27. [DOI:10.1371/journal.pbio.0040027]
38. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: implications for EBV-mediated immortalization. Molecular cell 2005; 18(1): 25-36. [DOI:10.1016/j.molcel.2005.02.029]
39. Wang Z, Kang W, Li O, Qi F, Wang J, You Y, He P, Suo Z, Zheng Y, Liu HM. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta pharmaceutica sinica B 2021; 11(3): 694-707. [DOI:10.1016/j.apsb.2020.11.005]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.