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ABSTRACT 
 

Genetic factors are involved in the development, progression, and severity of 
NAFLD. Polymorphisms in genes regulating liver functions may increase liver 
susceptibility to NAFLD. Therefore, we conducted this literature study to 
present recent findings on NAFLD-associated polymorphisms from published 
articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 
genes and 34 SNPs were reported to be associated with NAFLD. These 
mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, 
TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, 
AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, 
PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, 
GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these 
genetic factors helps to better understand the pathogenesis pathways of 
NAFLD. DOI: 10.52547/ibj.3647 
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INTRODUCTION 

 
on-alcoholic fatty liver disease is a term 

commonly used to cover an array of clinical 

manifestations in the liver that are not induced 

by secondary causes such as alcohol or drug 

consumption and defined genetic disorders. These 

manifestations involve steatosis, inflammation, and 

fibrosis, which can lead to cirrhosis and even 

hepatocellular carcinoma
[1-3]

. Histologically, NAFLD 

is classified into NAFL and NASH. In NAFL, steatosis 

is seen in more than 5% of the parenchyma, while in 
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NASH, necroinflammatory is present alongside 

steatosis. Obesity and insulin resistance drive the 

accumulation of TGs and FFAs in the liver, 

contributing to the growing epidemic of NAFLD
[2]

. 

The average global prevalence rate of NAFLD is 

25.24%, with the highest rates reported in the Middle 

East and South American countries reaching up to 

30%. In Asia, the incidence of NAFLD is 50.9 cases 

per 1,000 person-years. The global prevalence of 

NAFLD has increased from 15% in 2005 to 25% in 

2010, and it keeps increasing steadily
[4]

. More 

noticeable growth in NAFLD prevalence has been 

observed in Asia and Pacific countries, which might be 

correlated with the increasing rate of obesity, type 2 

diabetes, and metabolic syndromes in this region
[4,5]

.   

It has been established that genetic factors, along 

with environmental factors, are involved in the 

development, progression, and severity of NAFLD
[6]

. 

Certain genetic variants confer susceptibility to 

NAFLD. Several SNPs have been reported to be 

associated with specific phenotypes of NAFLD. 

Identifying the genetic factors in NAFLD will help to 

better understand the pathogenesis pathways of the 

disease. It also serves as a potential solution for future 

NAFLD genetic screening, the development of new 

genetic-based treatments, as well as the development of 

genetically modified animal models to facilitate studies 

in the field
[6]

.  

Similar reviews have previously been conducted on 

NAFLD-associated polymorphisms. Duvnjak et al.
[7]

 

reviewed the genetic polymorphisms in NAFLD 

published between 2002 and 2009 and discussed their 

involvement in NAFLD development and progression. 

Severson et al.
[6]

 also reported the genetic factors 

affecting NAFLD from studies between 2012 and 

2016, emphasizing certain genes and polymorphisms. 

A more recent article from Trépo and Valenti
[8] 

has 

reviewed several selected gene polymorphisms and 

their implications for NAFLD pathobiology, drug 

discovery, and risk prediction. In this narrative review, 

we aimed to present recent findings on NAFLD-

associated polymorphisms from published articles in 

PubMed from 2016 to 2021 and focused on discussing 

their roles in three main NAFLD spectrums: steatosis, 

inflammation, and fibrosis. 
 

 

MATERIALS AND METHODS 

 

We conducted a search in PubMed to identify the 

relevant articles. The detailed selection process is 

shown in Figure 1. The search term used was “NAFLD 

polymorphism” with the following search filters: 

published in the last five years (2016-2021), only in 

humans, and only articles in English. The search 

yielded 338 published references, which were then 

sorted by authors for relevance. Review articles and 

editorials were excluded from this study. Relevant 

research articles without complete data were also 

excluded. In the end, 69 published references were 

selected for this study, and the summarized data are 

presented in Table 1. 

 
 

 
 

Fig. 1. Article selection process. 
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Table 1. NAFLD-associated SNPs published between 2016 and 2021 

Genes SNP ID 
Risk 

allele 
Associations with NAFLD 

PNPLA3    

 rs738409 G Aggravate hepatosteatosis[9-17] 

Development of NAFLD[14,18-34] 

Elevated alanine aminotransferase levels[10,17,35-38] 

Associated with NASH[22,39-43] 

Associated with hepatic fat fractions[44] 

Associated with hepatocyte ballooning[41] 

Lobular and portal inflammation[41] 

Increased liver graft fat content[45] 

Elevated level of TGs[21,37] 

Increased liver fibrosis[13,14,17,22,34,36,42,46-50] 

Associated with cirrhosis[22] 

Increased AST levels[13,34,37,38] 

Higher body mass index[37] 

Higher serum level of γ-glutamyltransferase, ALP, total cholesterol, LDL, and uric 

acid [37] 

Higher serum level of CK18-M30[14] 

Increased severity of liver histology[33,49] 

Increased steatohepatitis, low level of high-density lipoprotein, and higher insulin 

resistance[17] 
   

rs4823173 A Associated with increased AST levels[51] 
   

rs2896019 G Associated with increased AST levels[51,52] 

Associated with NAFLD[52,53] 

Associated with increased ALT levels and decreased serum TGs and higher levels of 

LDL[52] 
 

   

rs2281135 A Associated with AST levels[51] 

Associated with hepatocyte ballooning and NASH[41] 

Lobular and portal inflammation[41] 

Associated with NAFLD[27,54] 

Associated with advanced fibrosis[50] 
   

rs3810622 T Associated with NAFLD, increased ALT levels, and higher level of blood glucose[52] 

Elevated ALT levels[35] 
   

rs12483959 A Associated with NAFLD[27] 

rs143392071 G Increased NAFLD risk[55] 

rs2143571 A Associated with advanced fibrosis[50] 

 

 

MBOAT7   

 

 rs626283 C Associated with NAFLD and may affect glucose metabolism by modulating 

intrahepatic fat content[56] 

 

rs641738 T Contributes to hepatic inflammation[57] 

Increased fibrosis[13,57,58] 

Higher ALT levels[58,59] 

Associated with increased liver injury[13] 

Associated with NAFLD risk[14,24] 

Associated with severe hepatic steatosis[14,58] 

 

TM6SF2    

 

rs58542926 T 

Associated with or independent risk factors of hepatic steatosis[13,60,61] 

Elevated ALT levels[13,61] 

Independent predictors of NASH[60] 

Increased levels of aminotransferases[36] 

Associated with advanced fibrosis[32] 

Associated with the risk of NAFLD[23,24,37,61,62] 

Associated with liver injury, deleterious effects on liver health, modulate hepatic fat 

accumulation, and  Increased serum AST[13] 
    

IL-17A rs2275913 A Development of NAFLD in obese patients[63] 

COL13A1 rs1227756 A Higher risk of elevated ALT levels[35] 
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Genes SNP ID 
Risk 

allele 
Associations with NAFLD 

SAMM50 rs3761472 G Associated with hepatocyte ballooning, lobular and portal inflammation, and 

NASH[41] 

Significant associations with NAFLD[27] 

 

rs2143571 A Significant associations with NAFLD[27] 

 

 rs2073080 T Significant associations with NAFLD[27] 

 

IL-6 rs1800795 C Associated with the development of NASH[64] 

Higher risk of steatosis with less parenchymal damage[65] 

Increased risk of NAFLD, higher BMI, fat mass, % body fat, waist circumference, 

serum TGs, total cholesterol, ALP, AST, and fasting insulin levels[66] 

 

rs10499563 C Associated with the presence of definitive NASH, increased ballooning, and Mallory 

bodies[65] 

 

IL-1B rs1143634 T Associated with advanced fibrosis and increased Mallory bodies[65] 

 

FNDC5 
 

rs3480 G More severe steatosis[67] 

AGTR1 rs5186 C Predictor of NAFLD incidence and severity[68] 

 

PPARGC1A 
 

rs8192678 A Risk factor for the development of NAFLD[69] 

CD82 
 

rs2303861 G Involved in the development and progression of NAFLD[70] 

UCP2 rs659366 
A Higher risk of NAFLD[71] 

T Determinant of fibrosis severity[15] 

 

TNF-α rs1800629 A Higher risk of NASH development[72] 

rs1799964 C Independent risk factors contributing to histological progression of NASH[73] 

 

NNMT 
 

rs694539 A Risk factor for developing NAFLD and NASH, correlated with the steatosis degree[74] 

HSD11B1 
rs2235543 

rs12565406 

rs4844880 

C 

G 

T 
 

 

 

Increased risk of NAFLD development and higher liver fat content[75] 

PTPRD rs35929428 A Associated with the development of NAFLD, play a role in hepatic lipid accumulation 

and fibrosis[76]
 

 

GATAD2A rs4808199 A Associated with NAFLD[53] 

 

 

TCF7L-2 rs7903146 T Independently associated with NAFLD[77] 

 

 

TLL1 rs17047200 T Higher risk of advanced fibrosis[46] 

BMI, body mass index; ALP, alkaline phosphatase; LDL, low-density lipoprotein 

 
 

RESULTS AND DISCUSSION 

 
GWAS has contributed to the identification of 

potential SNPs in NAFLD. These studies provided 

insights into the pathogenesis and the long-term 

prognosis of NAFLD
[78]

. There were 20 genes and 34 

SNPs reported to be associated with NAFLD in studies 

published in the last five years, which matched our 

search parameters as presented in Table 1. The 

majority of the literature we used in this review has 

investigated the association of NAFLD with three 

arguably major genetic factors of NAFLD: PNPLA3 

rs738409, TM6SF2 rs58542926, and MBOAT7 

rs641738. Each SNP has its roles in the development 

and progression of NAFLD, with the most reported 

association including the independent risk of NAFLD, 

aggravated steatosis, increased liver fibrosis, as well as 

elevated ALT and AST levels. Even though the 

association of the SNPs and NAFLD has been 

established in those genetic studies presented in Table 

1, the involvement of each polymorphism in NAFLD is 

often unclear. In this review, we discuss the possible 

involvement of the genes and/or the variants in three 

NAFLD spectrums (steatosis, inflammation, and 

fibrosis) based on the published studies. We also 

drafted the possible relationships of the discussed 

genes in those NAFLD spectrums as shown in Figures 

2 and 3.  
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PNPLA3  

The Human PNPLA3 gene is located on chromosome 

22, encoding a protein called adiponutrin. The gene 

acts as a lipid droplet regulator in hepatocytes, HSCs, 

and adipocytes. Since 1998, the rs738409 C>G variant 

has been identified to be associated with NAFLD
[79,80]

. 

The variant was reported to be involved in hepatic 

steatosis, inflammation, and fibrosis. It is unclear how 

the variant affects liver TG content, but it has been 

demonstrated that the variant is associated with the loss 

of TG hydrolase activities, eventually increasing 

intrahepatic TG accumulation
[81]

. Accordingly, the 

variant was linked to higher levels of circulating TGs, 

corroborating the impaired TG hydrolysis by 

lipoprotein lipase
[21]

. The hepatic fat content in 

individuals carrying the variant has also shown an 

increase in n-6 polyunsaturated fatty acids, indicating a 

pro-inflammatory condition that promotes de novo 

lipogenesis in the liver
[81]

. rs738409 was the only 

variant of PNPLA3 associated with hepatic steatosis in 

this review. The rs738409 SNP, as well as rs2281135 

and rs2143571, are also involved in hepatic fibrosis. 

PNPLA3 has been reported to activate HSCs and 

promote migration, proliferation, and the pro-

fibrogenic activities of HSCs
[82]

. Patients with NAFLD 

carrying the G allele of the rs738409 variant have 

displayed elevated serum ferritin levels, as well. Iron 

can cause oxidative stress by interacting with oxygen 

radicals. Oxidative stress is implicated in mediating the 

progression of fibrosis. Iron can also induce fibrosis by 

activating Kupffer cells to release pro-fibrogenic 

mediators
[83]

. Chatterjee et al.
[41]

 have reported the 

association of PNPLA3 variants, rs738409 and 

rs2281135, with portal and lobular inflammation. The 

variants are correlated with the release of pro-

inflammatory and pro-fibrogenic cytokines such as 

chemokine ligand 5, monocyte chemoattractant 

protein-1, IL-8, granulocyte-macrophage colony-

stimulating factor, and TNF-α
[81]

. Individuals 

harbouring the rs738409 variant had greater 

inflammatory  infiltration  than  individuals  with wild- 

type genotypes
[84]

. Accordingly, the culture medium  

of cells expressing the genetic variants was also shown 

to  recruit   more   immune   cells   than   the  wild-type  

 

 

 

 
 

Fig. 2. NAFLD-associated SNPs involved in liver steatosis. Polymorphisms in NAFLD-related genes cause TG accumulation in the 

liver through impaired TG hydrolase activities, increased lipogenesis, increased TG synthesis, reduced secretion of TG-rich VLDL, 

increased lipid droplet formation, STAT3 inactivation, increased liver supply of FFAs, decreased fatty acid oxidation, and decreased 

irisin secretion. Each gene and its polymorphisms have specific pathways in causing TG accumulation. For instance, polymorphisms in 

the PNPLA3 gene can impair the TG hydrolase activities, as well as cause an increase in n-6 PUFA level, which stimulate lipogenesis 

in the liver, resulting in steatosis. Mutations in TCF7L2, SAMM50, IL-6, and AGTR1 promote lipolysis in adipose tissue and skeletal 

muscle, leading to increased supply of FFAs to the liver, increased de novo lipogenesis, and eventually increased TG accumulation. 

Changes in MBOAT7 and IL-1B genes cause increased TG synthesis and lipid droplet formation. Meanwhile, the UCP2 gene seems to 

possess protective effects against steatosis by inducing fatty acid oxidation, lowering the supply of FFAs to the liver. (→: promote; ─|: 

inhibit; : mutated genes; ↓: decreased; ↑: increased) 
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Fig. 3. NAFLD-associated SNPs involved in liver inflammation and fibrosis. Inflammation is a contributing factor in fibrogenesis. 

Changes in genes involved in both processes can affect the development and progression of NAFLD. Mutations in PTPRD, PNPLA3, 

TNF-α, AGTR1, IL-17A, IL-1B, and GATAD2A indirectly cause fibrosis by inducing inflammatory responses through increased 

production of pro-inflammatory cytokines, increased immune cell proliferation, and leukocyte recruitment. Other polymorphisms are 

involved in fibrogenesis by either activating HSCs and Kupffer cells or inducing oxidative stress in liver tissue. Activated HSCs can 

transform into myofibroblasts that will then produce excess collagen, resulting in tissue scarring. (→: promote; ─|: inhibit; : 

mutated genes; ↓: decreased; ↑: increased) 
 

 

carriers
[81]

. To summarize, the polymorphisms in 

PNPLA3 gene affect NAFLD development and 

progression by promoting steatosis (rs738409), 

inflammation (rs738409 and rs2281135), and fibrosis 

(rs738409, rs2281135, and rs2143571). However, 

there was limited information on the involvement of 

the other PNPLA3 variants (rs4823173, rs2896019, 

rs3810622, rs12483959, and rs143392071) reported in 

this review on those three NAFLD spectrums. 

 

MBOAT7  

MBOAT7 protein, so-called lysophosphatidylinositol 

acyltransferase 1, is involved in acyl remodelling of 

phosphatidylinositols in the Lands cycle
[58]

. The 

carriers of rs641738 T allele have indicated lower 

hepatic MBOAT7 mRNA and protein expression
[57]

. 

Lower MBOAT7 expression is correlated with severe 

hepatic inflammation, advanced fibrosis, and higher 

ALT levels
[57-59]

. However, MBOAT7 involvement in 

hepatic inflammation is still unclear. It has previously 

demonstrated that the strong expression of MBOAT7 is 

found in immune cell subsets such as neutrophils, 

peripheral blood mononuclear cells, lymphocytes (B 

and T), monocytes, macrophages, natural killer cells, 

and dendritic cells
[85]

. The protein is also involved in 

eicosanoid production by neutrophils and myeloid 

cells, as well as the stimulation of T lymphocyte 

proliferation
[57]

. These findings suggest that MBOAT7 

plays a role in inflammatory activities. Also, MBOAT7-

mediated inflammation is thought to be associated with 

the progression to fibrosis, possibly independent of 

lipid accumulation and insulin resistance as the 

rs641738 variant was not associated with steatosis in 

chronic hepatitis B and C patients, as well as in obese 

Taiwanese children
[10,57,85]

. However, other studies 

have reported that the variant is also associated with 

steatosis
[14,58]

. In cultured human hepatocytes, reduced 

MBOAT7 expression caused by the rs641738 variant 

resulted in higher phosphatidylinositols turnover. This 

condition leads to the constant production of 

diacylglycerol, resulting in increased synthesis of 

hepatocyte TG
[86]

. TGs are known to be the main form 

of lipid stored in hepatic steatosis. In diet-induced 

steatotic mice, inhibition of TG synthesis through 

diacylglycerol acyltransferase 2-knockout could lower 

hepatic TGs by ~70%, with no significant changes in 
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liver inflammation, fibrosis, and insulin-glucose 

metabolism
[87]

. This finding supports the hypothesis 

that inflammation and fibrosis caused by the rs641738 

variant are independent of lipid accumulation. Another 

variant of the MBOAT7 gene, rs626283, has been 

exhibited to be related to liver fat content and impaired 

insulin sensitivity in obese Caucasian youth but not in 

African American and Hispanic populations
[56]

. Buch 

et al.
[88]

 have denoted that rs626283 had the strongest 

association with severe liver damage at the MBOAT7 

locus in European descent individuals with  

alcohol-related cirrhosis. The variant was also in  

high linkage disequilibrium with the rs641738  

variant, the functional variant affecting MBOAT7 

expression
[88]

. However, the involvement of  

the rs626283 variant in NAFLD remains unclear. 

Taken together, both MBOAT7 variants contribute to 

NAFLD through inflammation-mediated fibrosis and 

steatosis.   
 

TM6SF2  

The TM6SF2 rs58542926 SNP was identified to be 

associated with NAFLD, hepatic steatosis, elevated 

ALT and AST levels, and advanced fibrosis. A meta-

analysis by Liu et al.
[89]

 has also pointed out that the 

rs58542926 variant is associated with fibrosis and 

steatosis in individuals with chronic hepatitis C. 

Interestingly, the variant was not linked to 

inflammation. rs58542926 is known to decrease 

TM6SF2 expression. The variant causes reduced 

secretion of TG-rich VLDL, leading to lower serum 

TG levels and increased intrahepatic TG 

accumulation
[6,89]

. It is unclear whether the fibrosis is 

driven by lipid accumulation or not. An in vitro study 

has demonstrated that the rs58542926 SNP might 

increase the sensitivity of HSC activation. In the liver, 

HSCs are activated by TGF-β1, which is secreted by 

HSCs or Kupffer cells. TGF-β1 stimulates HSC 

transformation into myofibroblasts. TM6SF2-

knockdown LX2 cells have shown increased mRNA 

expression of α-smooth muscle actin following TGF-

β1 treatment, indicating that the variant promotes 

fibrosis
[90]

. The role of TM6SF2 in fibrosis still 

requires further investigations. Altogether, TM6SF2 

rs58542926 SNP is involved in NAFLD pathogenesis 

by promoting steatosis and fibrosis. 

 

PPARGC1A  

The A allele of rs8192678 SNP in PPARGC1A gene 

is a risk factor for NAFLD development in adult 

Iranian and Chinese Han populations
[69,91]

. However, 

the SNP was not associated with the biochemical and 

physiological parameters investigated in the study, 

including body mass index, fasting blood sugar, 

creatine, TGs, plasma lipid levels, HbA1c, and 

microalbumin levels. PPARGC1A is a transcriptional 

factor involved in lipid and energy metabolism
[69]

. The 

gene encodes peroxisome proliferator-activated 

receptor PGC-1α, which is highly expressed in the 

liver. PGC-1α promotes fatty acid oxidation in fasting 

condition
[91]

. Liang and Ward
[92]

 have reported that the 

downregulation of this gene increased lipogenesis and 

steatosis in the liver. Accordingly, the rs8192678 A 

allele was found to significantly lower the expression 

of PPARGC1A, resulting in reduced PGC-1α activities 

and altered PGC-1α interactions in regulating oxidative 

stress and lipid metabolism which will eventually lead 

to NAFLD development
[69,91]

. Overall, the rs8192678 

A allele contributes to NAFLD development through 

steatosis induction. 
 

IL-17A  

IL-17, especially IL-17A, is involved in NAFLD 

pathogenesis
[93]

. IL-17 induces the production of IL-6, 

which is important for Th17 cell differentiation. The 

rs2275913 (A) allele polymorphism is associated with 

elevated IL-17A levels
[94]

. Overexpression of IL-17A 

resulted in NAFLD progression and worsened liver 

injury in obese mice
[92]

. The IL-17A/IL-17RA axis is 

important in the progression of NAFL to NASH in 

high fat and methionine choline-deficient diets. 

Massive infiltration of IL-17
+
 cells was also found in 

NASH liver
[95]

. In conclusion, IL-17A SNP contributes 

to NAFLD development through its role in 

inflammation. 
 

IL-6  

Upregulation of serum and hepatic IL-6 was 

observed in patients with NAFLD and animal models. 

In the liver, IL-6 is produced by hepatocytes and 

Kupffer cells, and its expression in hepatocytes is 

correlated with the disease severity. IL-6 has protective 

roles in the liver due to its antiapoptotic action and its 

involvement in improving hepatic regeneration and 

repair. However, prolonged overexpression of IL-6 

might increase liver susceptibility to injury and 

apoptosis. IL-6 is recently known to be a mediator of 

fibrogenesis in HSCs. IL-6 also promotes the release of 

FFAs from the adipose tissue, increasing the supply of 

FFAs to the liver
[96]

. Both rs1800795 (C) and 

rs10499563 (C) alleles are polymorphisms in the 

promoter region of the IL-6 gene. The former 

polymorphism is frequently associated with lower IL-6 

expression even though there were reports of its 

association with higher serum IL-6 levels
[66,97,98]

. 

Further studies are required to confirm the effects of 

these polymorphisms on IL-6 levels. Mutations in the 

IL-6 gene weaken its hepatoprotective effect, making 

the liver more susceptible to NAFLD through 

inflammation, steatosis, and fibrosis. 
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IL-1B  

IL-1B is involved in NAFLD development through 

the IL-1 receptor signaling pathway. The rs1143634 

polymorphism in IL-1B gene is suggested to be 

associated with higher IL-1B expression. The presence 

of IL-1B induces lipid droplet formation in 

hepatocytes. IL-1B also promotes the recruitment of 

neutrophils in the liver by upregulating the expression 

of intercellular adhesion molecule 1 in endothelial 

cells. IL-1B, IL-6, and TNF-α cause chronic 

inflammation in the liver by activating local immune 

cells and attracting other immune cells to the liver. IL-

1B also contributes to the progression from liver 

inflammation to liver fibrosis
[99]

. IL-1B involvement in 

steatosis, inflammation, and fibrosis contributes to 

NAFLD development and progression.  

 
TNF-α  

TNF-α is involved in the development and 

progression of NAFLD by inducing the production of 

lipid metabolism enzymes, proinflammatory cytokines, 

and fibrosis-associated proteins
[100]

. It activates 

proinflammatory pathways such as c-Jun N-terminal 

kinase and nuclear factor-κB and indirectly blocks the 

anti-inflammatory effect of insulin by contributing to 

the development of insulin resistance
[101,102]

. Studies 

have reported the overexpression of circulating TNF-α 

among patients with NAFLD. Both rs1800629 A allele 

and rs1799964 C allele are associated with higher 

TNF-α expression. The increased circulating TNF-α is 

correlated with NAFLD severity
[103]

. As a result, the 

SNPs in the TNF-α gene facilitate the progression to 

NASH through its role in inflammation, steatosis, and 

fibrosis. 

 
FNDC5  

Metwally et al.
[67]

 have reported an association 

between the FNDC5 rs3480 variant and advanced 

steatosis. The variant affects hepatic FNDC5 

expression and provides a binding site for miR-135a-

5P that regulates several pathways involved in liver 

disease. FNDC5 is known to secrete irisin, which can 

ameliorate steatosis. A study by Canivet et al.
[104]

 have 

shown that FNDC5 could prevent fat accumulation in 

hepatocytes in vitro
. 
The genetic variant was found to 

downregulate FNDC5 expression
[67]

. Therefore, the 

lower expression of FNDC5 due to the polymorphism 

can lead to more severe steatosis. This observation 

suggests that without the polymorphism, liver  

tissue would express higher FNDC5 for its  

protective properties
[104]

. In summary, the FNDC5 

variant is involved in NAFLD by causing advanced 

steatosis. 

 

COL13A1  

Larrieta-Carrasco et al.
[35]

 have reported that the 

carriers of rs1227756 variant in COL13A1 gene 

expressed elevated ALT and AST levels, even though 

only the elevated AST level was significantly 

associated with rs1227756. However, the mechanism 

underlying the condition is still unclear. The variant 

was also reported to be associated with lobular 

inflammation in patients with NAFLD and T2DM
[105]

. 

Increased aminotransferase levels often indicate the 

presence of inflammation
[106]

. It is possible that 

changes in COL13A1 gene may influence the levels of 

liver enzymes through inflammatory response and/or 

T2DM-related pathways. Further studies are required 

to elucidate the involvement of COL13A1 in elevating 

the transaminase levels. To summarize, COL13A1 

polymorphism may contribute to NAFLD through 

inflammation. 
 

CD82  

A variant of CD82 was found to be associated with 

the development and progression of NAFLD. The 

mechanism by which the rs2303861 polymorphism 

influences NAFLD pathophysiology is still unclear due 

to the limited availability of studies on the topic. It is 

theorized that the polymorphism in CD82 gene 

promotes hepatic steatosis based on the evidence that 

CD82-knockout mice exhibit increased adipogenic 

potential. The rs2303861 SNP is also in linkage 

disequilibrium with rs7942159 of the PNPLA2 gene, 

which is involved in fat mobilization in adipose 

tissue
[70]

. Further studies are needed to investigate the 

effects of CD82 on NAFLD. However, it is thought 

that the CD82 variant plays a role in the development 

and progression of NAFLD through steatosis.  
 

AGTR1  

The AGTR1 rs5186 C allele can predict the risk and 

severity of NAFLD in Caucasian and Iranian 

populations
[68,107]

. The polymorphism promotes fat-

induced proinflammatory response and enhances NF-

κB activation in mononuclear cells. Activated NF-κB 

induces the release of pro-inflammatory and pro-

fibrogenic adipokines and chemokines, resulting in 

inflammation, adipose tissue dysfunction, and hepatic 

injury in NASH. The C allele of the polymorphism 

causes insulin resistance in skeletal muscle and adipose 

tissue, increasing the supply of FFAs to the liver and 

the release of mainly pro-inflammatory adipokines and 

chemokines
[68,108]

. The C allele is also responsible for 

VLDL accumulation, which is rich in TGs and 

cholesterol
[68]

. Collectively, the AGTR1 rs5186 C allele 

can be a predictor of NAFLD incidence and severity 

due to its involvement in inflammation, steatosis, and 

fibrosis in NAFLD. 
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UCP2  

The rs659366 G>A and C>T of the UCP2 gene are 

correlated with NAFLD susceptibility and fibrosis 

severity, respectively
[15,71]

. The carriers of rs659366 A 

allele are at higher risk of developing NAFLD in 

Iranian population with NAFLD
[71]

. The AA genotype 

shows the high expression of UCP2 and oxidative 

stress markers, as well as reduced insulin 

production
[109]

. However, the involvement of UCP2 in 

the development and progression of NAFLD is still 

unclear. Theoretically, UCP2 may have protective 

activities against NAFLD. High plasma fatty acid 

supply in the liver induces higher expression of UCP2. 

UCP2 will then promote fatty acid oxidation through 

several mechanisms: (1) increasing beta-oxidation of 

fatty acid in the mitochondria, (2) translocating non-

esterified fatty acids to prevent accumulation in the 

mitochondrial matrix, (3) releasing FFAs from the 

mitochondrial matrix and allowing re-entry as acyl-

CoA required for beta-oxidation, and (4) activating 

AMP-activated protein kinase, promoting the use of 

fatty acids in energy metabolism. Nevertheless, it has 

not been proven that UCP2 can prevent steatosis. 

Controversy also arises over the involvement of UCP2 

in oxidative stress. UCP2 is thought to be able to 

prevent ROS formation, but there is not enough 

evidence to support this claim. Increased UCP2 

expression is still unable to reduce oxidative stress and 

ROS formation in NAFLD animal models
[110]

. 

Ultimately, polymorphisms in the UCP2 gene may 

disrupt its protective roles in the liver and contribute to 

NAFLD development through steatosis and fibrosis. 

 

TCF7L-2  

The rs7903146 T allele in the TCF7L-2 gene was 

found to be strongly associated with NAFLD in Asian 

Indian population
[77]

. The T allele of this 

polymorphism is correlated with the increased 

expression of TCF7L-2
[111]

. TCF7L-2 modulates the 

activation of HSCs and fibrogenesis in the liver 

through β-catenin/TCF pathway. TCF7L-2 is also 

expressed in adipose tissue. TCF7L-2 activation in 

adipose tissue leads to inflammation, lipolysis, and 

lower adiponectin production
[112]

. Increased lipolysis 

following TCF7L-2 activation results in higher serum 

FFAs. Reduced adiponectin production will disrupt 

glucose and fatty acid metabolism. In line with these 

findings, the rs7903146 polymorphism was reported to 

be associated with a high level of serum FFAs
[113]

. 

TCF7L-2 also regulates glucose homeostasis, the 

rs7903146 variant impaired insulin secretion, making 

the carriers of the polymorphism at risk of developing 

T2DM
[77]

. This condition causes insulin resistance that 

contributes to the development of NAFLD by 

increasing de novo lipogenesis in the liver and 

promoting lipolysis in other tissues, leading to a higher 

FFA supply to the liver
[114]

. In short, the rs7903146 

variant is involved in the development and progression 

of NAFLD through steatosis, inflammation, and 

fibrosis. 

 

SAMM50  

The rs738491 T allele, rs2143571 A allele, and 

rs3761472 G allele of SAMM50 gene are associated 

with NAFLD in Korean population
[27]

. The association 

of SAMM50 polymorphisms and NAFLD has also been 

reported in Japanese, Asian Indian (only rs3761472 

SNP), and Chinese Han populations
[41,115,116]

. The 

rs3761472 variant was reported to be associated with 

hepatocyte ballooning, lobular and portal 

inflammation, and NASH
[41]

. The gene itself, 
SAMM50, plays a role in the progression of NAFL to 

NASH. SAMM50 encodes Sam50, which is important 

in maintaining the structure of mitochondrial cristae 

and the assembly of mitochondrial respiratory chain 

complexes
[116]

. Downregulation of Sam50 in the liver 

can cause mitochondrial dysfunction, which is known 

to contribute to the development of insulin resistance 

and hepatic steatosis in obese rat model
[117]

. Liver 

biopsy from patients with NASH has also shown 

mitochondrial abnormalities
[118]

. The three SAMM50 

variants may cause the lower production of Sam50, 

leading to mitochondrial dysfunction-mediated 

steatosis. To sum up, those variants may be responsible 

for NAFLD development and progression through 

inflammation (rs3761472 only), steatosis, and insulin 

resistance.  

 

TLL1  

The rs17047200 T allele is associated with a higher 

risk of developing advanced fibrosis in Japanese 

patients with NAFLD
[46]

. The SNP leads to the 

elevated expression of TLL1, which has been found to 

activate HSCs in animal models and humans, 

indicating its involvement in fibrogenesis
[119].

 

Activated HSCs have a myofibroblast-like phenotype, 

contributing to fibrogenesis through cell proliferation 

and upregulation of matrix production
[120]

. However, a 

contradicting study by Bayoumi et al.
[121]

 has reported 

that rs17047200 is not associated with fibrosis in 

Caucasian patients with biopsy-proven metabolic-

associated fatty liver disease. That study has also 

demonstrated that the overexpression of TLL1 in HSCs 

is detected in patients with metabolic steatohepatitis, in 

a murine fibrosis model fed with methionine choline-

deficient diet and in an in vitro human fibrosis model. 

Further studies are needed to elucidate the roles of 

TLL1 in both steatohepatitis and fibrosis, as well as to 
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confirm the effects of rs17047200 SNP on NAFLD. 

However, it is theorized that the SNP affects NAFLD 

through its involvement in steatosis and fibrosis.  

 

NNMT  

The AA genotype of NNMT rs694539 variant is 

related to the increased risk of NASH in obese 

Egyptians. The SNP is associated with steatosis but it 

is not considered a fibrosis marker
[74].

 Komatsu et 
al.

[122]
 have reported that the overexpression of NNMT 

depleted nicotinamide adenine dinucleotide (NAD) and 

S-adenosylmethionine, inducing the genes involved in 

steatosis and fibrosis in the liver of transgenic mice 

overexpressing NNMT. NAD has protective effects on 

ROS and also facilitates hydrogen transfer in reductive 

or oxidative metabolic reactions. NAD depletion 

reduces fatty acid oxidation, leading to the 

accumulation of TGs in hepatocytes. Therefore, 

inhibiting NNMT activities may prevent progression to 

NASH. Briefly, changes in the NNMT gene may 

contribute to NAFLD through steatosis and ROS-

mediated fibrosis. 

 

HSD11B1  

The rs2235543, rs12565406, and rs4844880 

polymorphisms in HSD11B1 gene are associated with 

the liver fat content. Accordingly, the HSD11B1 

mRNA expression positively correlates with the liver 

fat content, suggesting the involvement of 11β-HSD1 

in hepatic fat accumulation. The homozygous major 

allele carriers of the three SNPs also have shown 

elevated expression of HSD11B1 gene, and they are 

also twice at risk of developing NAFLD
[75]

. 

Overexpression of 11β-HSD1 in a high-fat diet leads to 

steatosis, while its deficiency is protective against 

steatosis. Lower expression of 11β-HSD1 is observed 

in the early stages of NAFLD, but increased 11β-HSD1 

levels are required for the progression to NASH. 

Inhibition of 11β-HSD1 caused reduced lipid content, 

making it a potential therapeutic target for steatosis
[123]

. 

To summarize, the HSD11B1 variants contribute to 

NAFLD through steatosis.  

 

PTPRD  

Polymorphism in PTPRD gene may be related to 

hepatic lipid accumulation and fibrosis progression in 

Japanese patients with NAFLD. More advanced 

steatosis and fibrosis have been observed in the GA 

genotype of the rs35929428 variant. PTPRD mainly 

dephosphorylates STAT3. Based on this evidence, 

Nakajima et al.
[76]

 observed an association between 

rs35929428 SNP and STAT3 dephosphorylation and 

found that the SNP enhanced STAT3 

dephosphorylation and strongly suppressed its 

phosphorylation in hepatocytes. However, 

dephosphorylation is known to negatively regulate 

STAT3 activation
[124]

. STAT3 inactivation leads to TG 

accumulation and worsens steatosis and hepatocellular 

damage. STAT3 inactivation also inhibits fibroblast-to-

myofibroblast transition in cultured fibroblasts, 

preventing the development of fibrosis
[125]

, which is in 

contrast to the results of Nakajima et al.’s
[76]

 study. 

The rs35929428 polymorphism may exacerbate 

fibrosis through other signalling pathways. In 

conclusion, the PTPRD variant has a role in the 

development and progression of NAFLD through 

steatosis and fibrosis.  

 

GATAD2A  

GATAD2A has been reported to be associated with 

the increased risk of NAFLD in Japanese patients with 

NAFLD. However, the function of this gene in 

NAFLD development is still vague
[53,126]

. GATAD2A 

gene is located at 19p12, along with TM6SF2 and 

NCAN, which are known to be associated with 

NAFLD
[126]

. GATAD2A enables zinc ion binding. In 

NASH, the serum zinc level is lower than in normal 

condition
[53]

. Zinc deficiency is a common 

pathogenesis pathway of NAFLD. Low zinc level 

correlates with more severe fibrosis and lobular 

inflammation
[126]

. The rs4808199 polymorphism might 

cause the overexpression of GATAD2A, resulting in 

higher zinc ion binding and lower zinc serum  

level. Taken together, the variant might be involved  

in NAFLD pathogenesis through zinc-related 

inflammation and fibrosis.  

 

Conflicting findings on NAFLD-associated 

polymorphisms and study limitations 
While the presented NAFLD-associated SNPs harbor 

potential benefits as therapeutic targets, conflicting 

results arise from several studies. For instance, no 

association was observed between NAFLD and the 

rs58542926 variant of TM6SF2 gene in Brazilian 

patients with NAFLD
[127]

. MBOAT7 rs641738 variant 

also did not show any correlation with steatosis in 

chronic hepatitis B and C patients, as well as in obese 

Taiwanese children
[10,57,85]

. These results might be due 

to the limitations of GWAS. In conventional GWAS, 

the association is only significant when it reaches the  

p < 5 × 10
-8 

threshold. Owing to this high level of 

significance, the association might be undetected in 

studies with small sample sizes. The use of larger 

sample size is preferable even though it is not always 

possible to assemble a large sample size. Besides, 

GWAS cannot identify the causal variants and 

genes
[128]

. Therefore, further investigation of the SNPs 

and genes of interest in vitro and in vivo is important to 
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fully understand their involvement in the development 

and progression of the disease.  

NAFLD is a complex disease. Many factors are 

involved in its development and progression. This 

review only presented the association of single genetic 

variants with NAFLD. NAFLD is known to be 

multigenic, involving the synergistic and antagonistic 

actions of several genes, along with environmental 

factors. Providing the information on combined 

NAFLD-associated SNPs would be a point of interest 

for future studies. We also could only infer the possible 

involvement of the SNPs and genes with their 

associated features in NAFLD from published 

literature, further studies are required to investigate the 

nature of their association. 

 

CONCLUSION 

 

Genetic factors are involved in the development and 

progression of NAFLD. Identifying genetic factors in 

NAFLD help to better understand the pathogenesis 

pathways of the disease. The SNPs presented in this 

review affect NAFLD through their involvement in 

three NAFLD spectrums (steatosis, fibrosis, and 

inflammation). Mutations in PNPLA3, MBOAT7, 

TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, 

UCP2, and NNMT directly induce steatosis in the 

liver, while polymorphisms in TCF7L2, SAMM50, IL-

6, and AGTR1 genes indirectly promote liver steatosis 

by increasing lipolysis in adipose tissue and skeletal 

muscle, resulting in a higher supply of FFAs to  

the liver. SNPs in PNPLA3, TNF-α, AGTR1, IL-17A, 

IL-1B, PTPRD, and GATAD2A cause liver 

inflammation. Inflammation, along with mutations in 

IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-

6, NNMT, UCP, AGTR1, and TM2SF6 also 

contributes to liver fibrosis. On the contrary, 

polymorphism in the PTPRD gene can inhibit fibrosis 

by preventing the transformation of HSCs to 

myofibroblasts. Even though these NAFLD-associated 

SNPs show potential benefits as therapeutic targets, 

conflicting findings from similar studies arise due to 

the limitations of GWAS. Therefore, further 

investigation of those genes and SNPs in vitro and in 

vivo is important to fully understand their involvement 

in the development and progression of NAFLD. 
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