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ABSTRACT

Genetic factors are involved in the development, progression, and severity of
NAFLD. Polymorphisms in genes regulating liver functions may increase liver
susceptibility to NAFLD. Therefore, we conducted this literature study to

present recent findings on NAFLD-associated polymorphisms from published
articles in PubMed from 2016 to 2021. From 69 selected research articles, 20
genes and 34 SNPs were reported to be associated with NAFLD. These
mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7,
TM2SF6, PTPRD, FNDCS5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMMSO0, IL-6,
AGTR1, and NNMT), inflammation (PNPLA3, TNF-a, AGTR1, IL-17A, IL-1B,
PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2,
GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these
genetic factors helps to better understand the pathogenesis pathways of
NAFLD. DOI: 10.52547/ibj.3647
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INTRODUCTION consumption and defined genetic disorders. These
manifestations involve steatosis, inflammation, and
fibrosis, which can lead to cirrhosis and even
hepatocellular carcinoma3l. Histologically, NAFLD
is classified into NAFL and NASH. In NAFL, steatosis

is seen in more than 5% of the parenchyma, while in

on-alcoholic fatty liver disease is a term
commonly used to cover an array of clinical
manifestations in the liver that are not induced
by secondary causes such as alcohol or drug

List of Abbreviations:
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NASH, necroinflammatory is present alongside
steatosis. Obesity and insulin resistance drive the
accumulation of TGs and FFAs in the liver,
contributing to the growing epidemic of NAFLDX.
The average global prevalence rate of NAFLD is
25.24%, with the highest rates reported in the Middle
East and South American countries reaching up to
30%. In Asia, the incidence of NAFLD is 50.9 cases
per 1,000 person-years. The global prevalence of
NAFLD has increased from 15% in 2005 to 25% in
2010, and it keeps increasing steadily!. More
noticeable growth in NAFLD prevalence has been
observed in Asia and Pacific countries, which might be
correlated with the increasing rate of obesity, %)e 2
diabetes, and metabolic syndromes in this regiont**.

It has been established that genetic factors, along
with environmental factors, are involved in the
development, progression, and severity of NAFLD.
Certain genetic variants confer susceptibility to
NAFLD. Several SNPs have been reported to be
associated with specific phenotypes of NAFLD.
Identifying the genetic factors in NAFLD will help to
better understand the pathogenesis pathways of the
disease. It also serves as a potential solution for future
NAFLD genetic screening, the development of new
genetic-based treatments, as well as the development of
genetically modified animal models to facilitate studies
in the field™.,

Similar reviews have previously been conducted on
NAFLD-associated polymorphisms. Duvnjak et al.l’
reviewed the genetic polymorphisms in NAFLD

published between 2002 and 2009 and discussed their
involvement in NAFLD development and progression.
Severson et al.! also reported the genetic factors
affecting NAFLD from studies between 2012 and
2016, emphasizing certain genes and polymorphisms.
A more recent article from Trépo and Valenti® has
reviewed several selected gene polymorphisms and
their implications for NAFLD pathobiology, drug
discovery, and risk prediction. In this narrative review,
we aimed to present recent findings on NAFLD-
associated polymorphisms from published articles in
PubMed from 2016 to 2021 and focused on discussing
their roles in three main NAFLD spectrums: steatosis,
inflammation, and fibrosis.

MATERIALS AND METHODS

We conducted a search in PubMed to identify the
relevant articles. The detailed selection process is
shown in Figure 1. The search term used was “NAFLD
polymorphism” with the following search filters:
published in the last five years (2016-2021), only in
humans, and only articles in English. The search
yielded 338 published references, which were then
sorted by authors for relevance. Review articles and
editorials were excluded from this study. Relevant
research articles without complete data were also
excluded. In the end, 69 published references were
selected for this study, and the summarized data are
presented in Table 1.

‘ PubMed search with “NAFLD polymorphism” keyword | 955 articles |

l

| Search filter 1: Articles m the last 5 years

482 articles

v

| Search filter 2: Articles only in English

475 articles

Search filter 3: Studies only in humans

- Origmal articles 261 articles

- Systematic reviews 7 articles

- Meta-analysis 16 articles

- Editorials 5 articles

- Reviews 49 articles
| Fust screening of original articles based on abstract relevance 99 articles

|

| Second screening based on full-text content and data availability

69 articles

Fig. 1. Article selection process.
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Table 1. NAFLD-associated SNPs published between 2016 and 2021

Genes

SNP ID

Risk
allele

Associations with NAFLD

PNPLA3

MBOAT7

TM6SF2

IL-17A
COL13A1

rs738409

rs4823173
rs2896019

rs2281135

rs3810622

rs12483959
rs143392071
rs2143571

s626283

rs641738

rs58542926

rs2275913
rs1227756

G

®

>O>

T

A
A

Aggravate hepatosteatosis® "]

Development of NAFLD#18-34

Elevated alanine aminotransferase levels™®t7:3-%
Associated with NASHZ239-431
Associated with hepatic fat fractions
Associated with hepatocyte ballooning™!!

Lobular and portal inflammation™%

Increased liver graft fat content!*®!

Elevated level of TGs?%%]

Increased liver fibrosis(t31417:22:34.36.42:46-50]

Associated with cirrhosis??

Increased AST levels!t33437:381

Higher body mass index”!

High[(3e7r] serum level of y-glutamyltransferase, ALP, total cholesterol, LDL, and uric
acid

Higher serum level of CK18-M30M4!

Increased severity of liver histology™**!

Increased steatohepatitis, low level of high-density lipoprotein, and higher insulin
resistancel*”!

[44]

Associated with increased AST levels®™!

Associated with increased AST levels®:5?

Associated with NAFLD2%
Asso[ci?ted with increased ALT levels and decreased serum TGs and higher levels of
LDLP?

Associated with AST levels®

Associated with hepatocyte ballooning and NASH!"!
Lobular and portal inflammation™"

Associated with NAFLDP"54

Associated with advanced fibrosis®”

Associated with NAFLD, increased ALT levels, and higher level of blood glucose®?
Elevated ALT levels®

Associated with NAFLD?2"]
Increased NAFLD risk™
Associated with advanced fibrosist®”!

Associated with NAFLD and may affect glucose metabolism by modulating
intrahepatic fat content!®®

Contributes to hepatic inflammation®"!
Increased fibrosis!*®>7¢!

Higher ALT levels®®>

Associated with increased liver injury
Associated with NAFLD risk*424
Associated with severe hepatic steatosis

[13]

[14,58]

Associated with or independent risk factors of hepatic steatosis*>¢%c

Elevated ALT levels™*61

Independent predictors of NASH®%

Increased levels of aminotransferasest®!

Associated with advanced fibrosist®

Associated with the risk of NAFLD?3:243761.62]

Associated with liver injury, deleterious effects on liver health, modulate hepatic fat
accumulation, and Increased serum AST!

Development of NAFLD in obese patients!®®!

Higher risk of elevated ALT levels®®
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Genes SNP ID ;llg:; Associations with NAFLD
SAMMS50 rs3761472 G Associated with hepatocyte ballooning, lobular and portal inflammation, and

NASHI

Significant associations with NAFLD?"

rs2143571 A
rs2073080

IL-6 rs1800795 C

Significant associations with NAFLD[?"

Significant associations with NAFLD?"

Associated with the development of NASHI®
Higher risk of steatosis with less parenchymal damage

[65]

Increased risk of NAFLD, higher BMI, fat mass, % body fat, waist circumference,
serum TGs, total cholesterol, ALP, AST, and fasting insulin levels®®

rs10499563 C

Associated with the presence of definitive NASH, increased ballooning, and Mallory

Associated with advanced fibrosis and increased Mallory bodies®!

[68]

Risk factor for the development of NAFLD!%

Involved in the development and progression of NAFLD!%

Independent risk factors contributing to histological progression of NASH!
Risk factor for developing NAFLD and NASH, correlated with the steatosis degreel’

Increased risk of NAFLD development and higher liver fat content™

Associated with the development of NAFLD, play a role in hepatic lipid accumulation

bodies®!
IL-1B rs1143634 T
FNDC5 rs3480 G More severe steatosis!®”)
AGTR1 rs5186 C Predictor of NAFLD incidence and severity
PPARGC1A rs8192678 A
CD82 rs2303861 G
A Higher risk of NAFLDIY
ucp2 rs659366 T Determinant of fibrosis severity!®
TNF-o rs1800629 A Higher risk of NASH development!’
rs1799964 C
NNMT rs694539 A
rs2235543 C
HSD11B1 rs12565406 G
rs4844880 T
PTPRD rs35929428 A
and fibrosis!™
GATAD2A rs4808199 A Associated with NAFLDE®!
TCF7L-2 rs7903146 T

TLL1 rs17047200 T

Independently associated with NAFLD

[771

Higher risk of advanced fibrosis!*®!

BMI, body mass index; ALP, alkaline phosphatase; LDL, low-density lipoprotein

RESULTS AND DISCUSSION

GWAS has contributed to the identification of
potential SNPs in NAFLD. These studies provided
insights into the pathogenesis and the long-term
prognosis of NAFLD. There were 20 genes and 34
SNPs reported to be associated with NAFLD in studies
published in the last five years, which matched our
search parameters as presented in Table 1. The
majority of the literature we used in this review has
investigated the association of NAFLD with three
arguably major genetic factors of NAFLD: PNPLA3
rs738409, TMG6SF2 rs58542926, and MBOAT7
rs641738. Each SNP has its roles in the development

Iran. Biomed. J. 26 (4): 252-268

and progression of NAFLD, with the most reported
association including the independent risk of NAFLD,
aggravated steatosis, increased liver fibrosis, as well as
elevated ALT and AST levels. Even though the
association of the SNPs and NAFLD has been
established in those genetic studies presented in Table
1, the involvement of each polymorphism in NAFLD is
often unclear. In this review, we discuss the possible
involvement of the genes and/or the variants in three
NAFLD spectrums (steatosis, inflammation, and
fibrosis) based on the published studies. We also
drafted the possible relationships of the discussed
genes in those NAFLD spectrums as shown in Figures
2 and 3.

255


http://dx.doi.org/10.52547/ibj.3647
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.4.7.4
http://ibj.pasteur.ac.ir/article-1-3647-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-20 ]

[ DOR: 20.1001.1.1028852.2022.26.4.7.4 ]

[ DOI: 10.52547/ibj.3647 ]

NAFLD-Associated Polymorphisms

Astarini et al.

PNPLA3

The Human PNPLA3 gene is located on chromosome
22, encoding a protein called adiponutrin. The gene
acts as a lipid droplet regulator in hepatocytes, HSCs,
and adipocytes. Since 1998, the rs738409 C>G variant
has been identified to be associated with NAFLDL#%.
The variant was reported to be involved in hepatic
steatosis, inflammation, and fibrosis. It is unclear how
the variant affects liver TG content, but it has been
demonstrated that the variant is associated with the loss
of TG hydrolase activities, eventually increasing
intrahepatic TG accumulation®. Accordingly, the
variant was linked to higher levels of circulating TGs,
corroborating the impaired TG hydrolysis by
lipoprotein lipase®. The hepatic fat content in
individuals carrying the variant has also shown an
increase in n-6 polyunsaturated fatty acids, indicating a
pro-inflammatory condition that promotes de novo
lipogenesis in the liver®. rs738409 was the only
variant of PNPLA3 associated with hepatic steatosis in
this review. The rs738409 SNP, as well as rs2281135
and rs2143571, are also involved in hepatic fibrosis.

PNPLA3

}

PNPLA3 has been reported to activate HSCs and
promote migration, proliferation, and the pro-
fibrogenic activities of HSCs®?. Patients with NAFLD
carrying the G allele of the rs738409 variant have
displayed elevated serum ferritin levels, as well. Iron
can cause oxidative stress by interacting with oxygen
radicals. Oxidative stress is implicated in mediating the
progression of fibrosis. Iron can also induce fibrosis by
activating Kupffer cells to release pro-fibrogenic
mediators®!. Chatterjee et al.*! have reported the
association of PNPLA3 variants, rs738409 and
rs2281135, with portal and lobular inflammation. The
variants are correlated with the release of pro-
inflammatory and pro-fibrogenic cytokines such as

chemokine ligand 5, monocyte chemoattractant
protein-1, IL-8, granulocyte-macroPhage colony-
stimulating factor, and TNF-o®. Individuals

harbouring the rs738409 variant had greater
inflammatory infiltration than individuals with wild-
type genotypes®?. Accordingly, the culture medium
of cells expressing the genetic variants was also shown
to recruit more immune cells than the wild-type

MBOAT7 TM2SF6

} l

Impaired TG hydrolase activities
1 n-6 PUFA

Y

| 1 Diacylglycerol | | Secretion of TG-rich VLDL

l

‘ 1 TG synthesis ‘

A4

PPARGCIA

Intrahepatic TG accumulation (Steatosis)

STAT3
‘47 inactivation [* PTPRD

f

Pt |

| | Irisin secretion ‘ | Lipid droplet formation

| T

FNDC5 IL-1B

1——{ Insulin resistant «——

‘ UCP2 ‘ | 1 Supply of FFAs
7
‘ Fatty acid oxidation }
‘ NAD depletion ‘ 1 Lipolysis in adipose tissue and
skeletal muscle
T
NNMT IL-6, AGTR1, TCF7L2

TCF7L2, SAMMS50

Fig. 2. NAFLD-associated SNPs involved in liver steatosis. Polymorphisms in NAFLD-related genes cause TG accumulation in the
liver through impaired TG hydrolase activities, increased lipogenesis, increased TG synthesis, reduced secretion of TG-rich VLDL,
increased lipid droplet formation, STAT3 inactivation, increased liver supply of FFAs, decreased fatty acid oxidation, and decreased
irisin secretion. Each gene and its polymorphisms have specific pathways in causing TG accumulation. For instance, polymorphisms in
the PNPLA3 gene can impair the TG hydrolase activities, as well as cause an increase in n-6 PUFA level, which stimulate lipogenesis
in the liver, resulting in steatosis. Mutations in TCF7L2, SAMM50, IL-6, and AGTR1 promote lipolysis in adipose tissue and skeletal
muscle, leading to increased supply of FFAs to the liver, increased de novo lipogenesis, and eventually increased TG accumulation.
Changes in MBOAT?7 and IL-1B genes cause increased TG synthesis and lipid droplet formation. Meanwhile, the UCP2 gene seems to
possess protective effects against steatosis by inducing fatty acid oxidation, lowering the supply of FFAs to the liver. (—: promote;
inhibit; : mutated genes; |: decreased; 1: increased)
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PNPLA3, IL-6, TCF7L2, TLL1 PNPLA3 NNMT
Activation of HSCs i
— 1 Iron levels | NAD
Activation of Kupffer cells
PTPRD <«—  TM2SF6
<«— AGTRI
| Oxidative stress | | ucp
Transformation to 1 Production of profibrogenic
myofibroblasts mediators
l GATAD2A
=I Fibrosis | Zinc levels
A
«— MBOAT7, IL-1B, TCF7L2
| Inflammation I4
Production of pro-inflammatory ——b| Leukocyte infiltration F‘{ T cell proliferation
cytokines X T
PNPLA3, TNFo, AGTR1 IL-17A, IL-1B PTPRD

Fig. 3. NAFLD-associated SNPs involved in liver inflammation and fibrosis. Inflammation is a contributing factor in fibrogenesis.
Changes in genes involved in both processes can affect the development and progression of NAFLD. Mutations in PTPRD, PNPLA3,
TNF-a, AGTR1, IL-17A, IL-1B, and GATAD2A indirectly cause fibrosis by inducing inflammatory responses through increased
production of pro-inflammatory cytokines, increased immune cell proliferation, and leukocyte recruitment. Other polymorphisms are
involved in fibrogenesis by either activating HSCs and Kupffer cells or inducing oxidative stress in liver tissue. Activated HSCs can
transform into myofibroblasts that will then produce excess collagen, resulting in tissue scarring. (—: promote; —|: inhibit;

mutated genes; |: decreased; 1: increased)

carriers®. To summarize, the polymorphisms in

PNPLA3 gene affect NAFLD development and
progression by promoting steatosis (rs738409),
inflammation (rs738409 and rs2281135), and fibrosis
(rs738409, rs2281135, and rs2143571). However,
there was limited information on the involvement of
the other PNPLA3 variants (rs4823173, rs2896019,
rs3810622, rs12483959, and rs143392071) reported in
this review on those three NAFLD spectrums.

MBOAT7

MBOAT?7 protein, so-called lysophosphatidylinositol
acyltransferase 1, is involved in acyl remodelling of
phosphatidylinositols in the Lands cycle®®. The
carriers of rs641738 T allele have indicated lower
hepatic MBOAT7 mRNA and protein expression”.
Lower MBOAT7 expression is correlated with severe
hepatic inflammation, advanced fibrosis, and higher
ALT levels® % However, MBOAT?7 involvement in
hepatic inflammation is still unclear. It has previously
demonstrated that the strong expression of MBOATY7 is
found in immune cell subsets such as neutrophils,
peripheral blood mononuclear cells, lymphocytes (B

Iran. Biomed. J. 26 (4): 252-268

and T), monocytes, macrophages, natural killer cells,
and dendritic cells®™!. The protein is also involved in
eicosanoid production by neutrophils and myeloid
cells, as well as the stimulation of T lymphocyte
proliferation®™. These findings suggest that MBOAT7
plays a role in inflammatory activities. Also, MBOAT7-
mediated inflammation is thought to be associated with
the progression to fibrosis, possibly independent of
lipid accumulation and insulin resistance as the
rs641738 variant was not associated with steatosis in
chronic hepatitis B and C patients, as well as in obese
Taiwanese children®®%"%!  However, other studies
have reported that the variant is also associated with
steatosis™®®!. In cultured human hepatocytes, reduced
MBOATY expression caused by the rs641738 variant
resulted in higher phosphatidylinositols turnover. This
condition leads to the constant production of
diacylglycerol, resulting in increased synthesis of
hepatocyte TG TGs are known to be the main form
of lipid stored in hepatic steatosis. In diet-induced
steatotic mice, inhibition of TG synthesis through
diacylglycerol acyltransferase 2-knockout could lower
hepatic TGs by ~70%, with no significant changes in
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liver inflammation, fibrosis, and insulin-glucose
metabolism®. This finding supports the hypothesis
that inflammation and fibrosis caused by the rs641738
variant are independent of lipid accumulation. Another
variant of the MBOAT7 gene, rs626283, has been
exhibited to be related to liver fat content and impaired
insulin sensitivity in obese Caucasian youth but not in
African American and Hispanic populations®®. Buch
et al.’® have denoted that rs626283 had the strongest
association with severe liver damage at the MBOAT7
locus in European descent individuals with
alcohol-related cirrhosis. The variant was also in
high linkage disequilibrium with the rs641738
variant, the functional variant affecting MBOAT7
expression®.  However, the involvement of
the rs626283 variant in NAFLD remains unclear.
Taken together, both MBOAT7 variants contribute to
NAFLD through inflammation-mediated fibrosis and
steatosis.

TM6SF2

The TM6SF2 rs58542926 SNP was identified to be
associated with NAFLD, hepatic steatosis, elevated
ALT and AST levels, and advanced fibrosis. A meta-
analysis by Liu et al.®¥ has also pointed out that the
rs58542926 variant is associated with fibrosis and
steatosis in individuals with chronic hepatitis C.
Interestingly, the wvariant was not linked to
inflammation. rs58542926 is known to decrease
TMG6SF2 expression. The variant causes reduced
secretion of TG-rich VLDL, leading to lower serum
TG levels and increased intrahepatic TG
accumulation®®. 1t is unclear whether the fibrosis is
driven by lipid accumulation or not. An in vitro study
has demonstrated that the rs58542926 SNP might
increase the sensitivity of HSC activation. In the liver,
HSCs are activated by TGF-B1, which is secreted by
HSCs or Kupffer cells. TGF-B1 stimulates HSC
transformation  into  myofibroblasts.  TM6SF2-
knockdown LX2 cells have shown increased mRNA
expression of a-smooth muscle actin following TGF-
B1 treatment, indicating that the variant promotes
fibrosis®™. The role of TM6SF2 in fibrosis still
requires further investigations. Altogether, TM6SF2
rs58542926 SNP is involved in NAFLD pathogenesis
by promoting steatosis and fibrosis.

PPARGC1A

The A allele of rs8192678 SNP in PPARGC1A gene
is a risk factor for NAFLD development in adult
Iranian and Chinese Han populations®®. However,
the SNP was not associated with the biochemical and
physiological parameters investigated in the study,
including body mass index, fasting blood sugar,
creatine, TGs, plasma lipid levels, HbAlc, and

258

microalbumin levels. PPARGCI1A is a transcriptional
factor involved in lipid and energy metabolism!®®. The
gene encodes peroxisome proliferator-activated
receptor PGC-1a, which is highly expressed in the
liver. PGC-1la promotes fatty acid oxidation in fasting
condition®. Liang and Ward"®® have reported that the
downregulation of this gene increased lipogenesis and
steatosis in the liver. Accordingly, the rs8192678 A
allele was found to significantly lower the expression
of PPARGCI1A, resulting in reduced PGC-1a activities
and altered PGC-1a interactions in regulating oxidative
stress and lipid metabolism which will eventually lead
to NAFLD development!®**. Overall, the rs8192678
A allele contributes to NAFLD development through
steatosis induction.

IL-17A

IL-17, especially IL-17A, is involved in NAFLD
pathogenesis®!. 1L-17 induces the production of IL-6,
which is important for Th17 cell differentiation. The
rs2275913 (A) allele poI}/morphism is associated with
elevated IL-17A levels’®. Overexpression of IL-17A
resulted in NAFLD grogression and worsened liver
injury in obese mice®?. The IL-17A/IL-17RA axis is
important in the progression of NAFL to NASH in
high fat and methionine choline-deficient diets.
Massive infiltration of IL-17" cells was also found in
NASH liver®!. In conclusion, IL-17A SNP contributes
to NAFLD development through its role in
inflammation.

IL-6

Upregulation of serum and hepatic IL-6 was
observed in patients with NAFLD and animal models.
In the liver, IL-6 is produced by hepatocytes and
Kupffer cells, and its expression in hepatocytes is
correlated with the disease severity. IL-6 has protective
roles in the liver due to its antiapoptotic action and its
involvement in improving hepatic regeneration and
repair. However, prolonged overexpression of IL-6
might increase liver susceptibility to injury and
apoptosis. IL-6 is recently known to be a mediator of
fibrogenesis in HSCs. IL-6 also promotes the release of
FFAs from the adipose tissue, increasing the supply of
FFAs to the liver™. Both rs1800795 (C) and
rs10499563 (C) alleles are polymorphisms in the
promoter region of the IL-6 gene. The former
polymorphism is frequently associated with lower IL-6
expression even though there were reports of its
association with higher serum IL-6 levels!®®"%I
Further studies are required to confirm the effects of
these polymorphisms on IL-6 levels. Mutations in the
IL-6 gene weaken its hepatoprotective effect, making
the liver more susceptible to NAFLD through
inflammation, steatosis, and fibrosis.
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IL-1B

IL-1B is involved in NAFLD development through
the IL-1 receptor signaling pathway. The rs1143634
polymorphism in IL-1B gene is suggested to be
associated with higher IL-1B expression. The presence
of IL-1B induces lipid droplet formation in
hepatocytes. IL-1B also promotes the recruitment of
neutrophils in the liver by upregulating the expression
of intercellular adhesion molecule 1 in endothelial
cells. I1L-1B, IL-6, and TNF-o cause chronic
inflammation in the liver by activating local immune
cells and attracting other immune cells to the liver. IL-
1B also contributes to the progression from liver
inflammation to liver fibrosis®®!. IL-1B involvement in
steatosis, inflammation, and fibrosis contributes to
NAFLD development and progression.

TNF-a

TNF-o. is involved in the development and
progression of NAFLD by inducing the production of
lipid metabolism enzymes, proinflammatory cytokines,
and fibrosis-associated proteinst®®. It activates
proinflammatory pathways such as c-Jun N-terminal
kinase and nuclear factor-xB and indirectly blocks the
anti-inflammatory effect of insulin by contributing to
the development of insulin resistance™™ %2, Studies
have reported the overexpression of circulating TNF-a
among patients with NAFLD. Both rs1800629 A allele
and rs1799964 C allele are associated with higher
TNF-a expression. The increased circulating TNF-a is
correlated with NAFLD severity™®!. As a result, the
SNPs in the TNF-a gene facilitate the progression to
NASH through its role in inflammation, steatosis, and
fibrosis.

FNDC5

Metwally et al.’”! have reported an association
between the FNDC5 rs3480 variant and advanced
steatosis. The variant affects hepatic FNDC5
expression and provides a binding site for miR-135a-
5P that regulates several pathways involved in liver
disease. FNDCS5 is known to secrete irisin, which can
ameliorate steatosis. A study by Canivet et al.** have
shown that FNDC5 could prevent fat accumulation in
hepatocytes in vitro' The genetic variant was found to
downregulate FNDC5 expression'®”). Therefore, the
lower expression of FNDC5 due to the polymorphism
can lead to more severe steatosis. This observation
suggests that without the polymorphism, liver
tissue would express higher FNDC5 for its
protective properties™®. In summary, the FNDC5
variant is involved in NAFLD by causing advanced
steatosis.
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COL13A1

Larrieta-Carrasco et al.*® have reported that the
carriers of rs1227756 variant in COL13Al gene
expressed elevated ALT and AST levels, even though
only the elevated AST level was significantly
associated with rs1227756. However, the mechanism
underlying the condition is still unclear. The variant
was also reported to be associated with lobular
inflammation in patients with NAFLD and T2DM%],
Increased aminotransferase levels often indicate the
presence of inflammation™®. It is possible that
changes in COL13A1 gene may influence the levels of
liver enzymes through inflammatory response and/or
T2DM-related pathways. Further studies are required
to elucidate the involvement of COL13A1 in elevating
the transaminase levels. To summarize, COL13Al
polymorphism may contribute to NAFLD through
inflammation.

CD82

A variant of CD82 was found to be associated with
the development and progression of NAFLD. The
mechanism by which the rs2303861 polymorphism
influences NAFLD pathophysiology is still unclear due
to the limited availability of studies on the topic. It is
theorized that the polymorphism in CD82 gene
promotes hepatic steatosis based on the evidence that
CDB82-knockout mice exhibit increased adipogenic
potential. The rs2303861 SNP is also in linkage
disequilibrium with rs7942159 of the PNPLA2 gene,
which is involved in fat mobilization in adipose
tissuel”®.. Further studies are needed to investigate the
effects of CD82 on NAFLD. However, it is thought
that the CD82 variant plays a role in the development
and progression of NAFLD through steatosis.

AGTR1

The AGTR1 rs5186 C allele can predict the risk and
severity of NAFLD in Caucasian and Iranian
populations®®*. The polymorphism promotes fat-
induced proinflammatory response and enhances NF-
kB activation in mononuclear cells. Activated NF-xB
induces the release of pro-inflammatory and pro-
fibrogenic adipokines and chemokines, resulting in
inflammation, adipose tissue dysfunction, and hepatic
injury in NASH. The C allele of the polymorphism
causes insulin resistance in skeletal muscle and adipose
tissue, increasing the supply of FFAs to the liver and
the release of mainly pro-inflammatory adipokines and
chemokines®%. The C allele is also responsible for
VLDL accumulation, which is rich in TGs and
cholesterol®. Collectively, the AGTR1 rs5186 C allele
can be a predictor of NAFLD incidence and severity
due to its involvement in inflammation, steatosis, and
fibrosis in NAFLD.
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UCP2

The rs659366 G>A and C>T of the UCP2 gene are
correlated with NAFLD susceptibility and fibrosis
severity, respectively™™ . The carriers of rs659366 A
allele are at higher risk of developing NAFLD in
Iranian population with NAFLD'Y. The AA genotype
shows the high expression of UCP2 and oxidative
stress markers, as well as reduced insulin
production™®®. However, the involvement of UCP2 in
the development and progression of NAFLD is still
unclear. Theoretically, UCP2 may have protective
activities against NAFLD. High plasma fatty acid
supply in the liver induces higher expression of UCP2.
UCP2 will then promote fatty acid oxidation through
several mechanisms: (1) increasing beta-oxidation of
fatty acid in the mitochondria, (2) translocating non-
esterified fatty acids to prevent accumulation in the
mitochondrial matrix, (3) releasing FFAs from the
mitochondrial matrix and allowing re-entry as acyl-
CoA required for beta-oxidation, and (4) activating
AMP-activated protein kinase, promoting the use of
fatty acids in energy metabolism. Nevertheless, it has
not been proven that UCP2 can prevent steatosis.
Controversy also arises over the involvement of UCP2
in oxidative stress. UCP2 is thought to be able to
prevent ROS formation, but there is not enough
evidence to support this claim. Increased UCP2
expression is still unable to reduce oxidative stress and
ROS formation in NAFLD animal models™?®.
Ultimately, polymorphisms in the UCP2 gene may
disrupt its protective roles in the liver and contribute to
NAFLD development through steatosis and fibrosis.

TCF7L-2

The rs7903146 T allele in the TCF7L-2 gene was
found to be strongly associated with NAFLD in Asian
Indian population?.  The T allele of this
polymorphism is correlated with the increased
expression of TCF7L-2". TCF7L-2 modulates the
activation of HSCs and fibrogenesis in the liver
through B-catenin/TCF pathway. TCF7L-2 is also
expressed in adipose tissue. TCF7L-2 activation in
adipose tissue leads to inflammation, lipolysis, and
lower adiponectin production™?. Increased lipolysis
following TCF7L-2 activation results in higher serum
FFAs. Reduced adiponectin production will disrupt
glucose and fatty acid metabolism. In line with these
findings, the rs7903146 polymorphism was reported to
be associated with a high level of serum FFAs*®l.
TCF7L-2 also regulates glucose homeostasis, the
rs7903146 variant impaired insulin secretion, making
the carriers of the polymorphism at risk of developing
T2DMI™. This condition causes insulin resistance that
contributes to the development of NAFLD by
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increasing de novo lipogenesis in the liver and
promoting lipolysis in other tissues, leading to a higher
FFA supply to the liver™™. In short, the rs7903146
variant is involved in the development and progression
of NAFLD through steatosis, inflammation, and
fibrosis.

SAMMS50

The rs738491 T allele, rs2143571 A allele, and
rs3761472 G allele of SAMMS50 gene are associated
with NAFLD in Korean population'””). The association
of SAMMS50 polymorphisms and NAFLD has also been
reported in Japanese, Asian Indian (only rs3761472
SNP), and Chinese Han populations?*****!¢ The
rs3761472 variant was reported to be associated with
hepatocyte  ballooning,  lobular and  portal
inflammation, and NASH"Y. The gene itself,
SAMMS0, plays a role in the progression of NAFL to
NASH. SAMM50 encodes Sam50, which is important
in maintaining the structure of mitochondrial cristae
and the assembly of mitochondrial respiratory chain
complexes*'®l. Downregulation of Sam50 in the liver
can cause mitochondrial dysfunction, which is known
to contribute to the development of insulin resistance
and hepatic steatosis in obese rat model™. Liver
biopsy from patients with NASH has also shown
mitochondrial abnormalities™®. The three SAMMS50
variants may cause the lower production of Sam50,
leading to mitochondrial  dysfunction-mediated
steatosis. To sum up, those variants may be responsible
for NAFLD development and progression through
inflammation (rs3761472 only), steatosis, and insulin
resistance.

TLL1

The rs17047200 T allele is associated with a higher
risk of developing advanced fibrosis in Japanese
patients with NAFLD¥®. The SNP leads to the
elevated expression of TLL1, which has been found to
activate  HSCs in animal models and humans,
indicating its involvement in fibrogenesis™'%
Activated HSCs have a myofibroblast-like phenotype,
contributing to fibrogenesis through cell proliferation
and upregulation of matrix production®?”. However, a
contradicting study by Bayoumi et al.*?!! has reported
that rs17047200 is not associated with fibrosis in
Caucasian patients with biopsy-proven metabolic-
associated fatty liver disease. That study has also
demonstrated that the overexpression of TLL1 in HSCs
is detected in patients with metabolic steatohepatitis, in
a murine fibrosis model fed with methionine choline-
deficient diet and in an in vitro human fibrosis model.
Further studies are needed to elucidate the roles of
TLL1 in both steatohepatitis and fibrosis, as well as to
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confirm the effects of rs17047200 SNP on NAFLD.
However, it is theorized that the SNP affects NAFLD
through its involvement in steatosis and fibrosis.

NNMT

The AA genotype of NNMT rs694539 variant is
related to the increased risk of NASH in obese
Egyptians. The SNP is associated with steatosis but it
is not considered a fibrosis marker™ Komatsu et
al.*?? have reported that the overexpression of NNMT
depleted nicotinamide adenine dinucleotide (NAD) and
S-adenosylmethionine, inducing the genes involved in
steatosis and fibrosis in the liver of transgenic mice
overexpressing NNMT. NAD has protective effects on
ROS and also facilitates hydrogen transfer in reductive
or oxidative metabolic reactions. NAD depletion
reduces fatty acid oxidation, leading to the
accumulation of TGs in hepatocytes. Therefore,
inhibiting NNMT activities may prevent progression to
NASH. Briefly, changes in the NNMT gene may
contribute to NAFLD through steatosis and ROS-
mediated fibrosis.

HSD11B1

The rs2235543, rs12565406, and rs4844880
polymorphisms in HSD11B1 gene are associated with
the liver fat content. Accordingly, the HSD11B1
mRNA expression positively correlates with the liver
fat content, suggesting the involvement of 11p-HSD1
in hepatic fat accumulation. The homozygous major
allele carriers of the three SNPs also have shown
elevated expression of HSD11B1 gene, and they are
also twice at risk of developing NAFLD®.
Overexpression of 11B-HSD1 in a high-fat diet leads to
steatosis, while its deficiency is protective against
steatosis. Lower expression of 113-HSD1 is observed
in the early stages of NAFLD, but increased 11p-HSD1
levels are required for the progression to NASH.
Inhibition of 11B-HSD1 caused reduced lipid content,
making it a potential therapeutic target for steatosis™*?!.
To summarize, the HSD11B1 variants contribute to
NAFLD through steatosis.

PTPRD

Polymorphism in PTPRD gene may be related to
hepatic lipid accumulation and fibrosis progression in
Japanese patients with NAFLD. More advanced
steatosis and fibrosis have been observed in the GA
genotype of the rs35929428 variant. PTPRD mainly
dephosphorylates STAT3. Based on this evidence,
Nakajima et al.™® observed an association between
rs35929428 SNP and STAT3 dephosphorylation and
found that the SNP  enhanced STAT3
dephosphorylation and strongly suppressed its
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phosphorylation in hepatocytes. However,
dephosphorylation is known to negatively regulate
STAT3 activation'?, STAT3 inactivation leads to TG
accumulation and worsens steatosis and hepatocellular
damage. STAT3 inactivation also inhibits fibroblast-to-
myofibroblast transition in cultured fibroblasts,
preventing the development of fibrosis™*?!, which is in
contrast to the results of Nakajima et al.’sl"™ study.
The rs35929428 polymorphism may exacerbate
fibrosis through other signalling pathways. In
conclusion, the PTPRD variant has a role in the
development and progression of NAFLD through
steatosis and fibrosis.

GATAD2A

GATAD2A has been reported to be associated with
the increased risk of NAFLD in Japanese patients with
NAFLD. However, the function of this gene in
NAFLD development is still vague®*'?®. GATAD2A
gene is located at 19pl12, along with TM6SF2 and
NCAN, which are known to be associated with
NAFLD!"?®]. GATAD2A enables zinc ion binding. In
NASH, the serum zinc level is lower than in normal
condition®.  Zinc  deficiency is a common
pathogenesis pathway of NAFLD. Low zinc level
correlates with more severe fibrosis and lobular
inflammation™®!. The rs4808199 polymorphism might
cause the overexpression of GATAD2A, resulting in
higher zinc ion binding and lower zinc serum
level. Taken together, the variant might be involved
in  NAFLD pathogenesis through zinc-related
inflammation and fibrosis.

Conflicting  findings on  NAFLD-associated
polymorphisms and study limitations

While the presented NAFLD-associated SNPs harbor
potential benefits as therapeutic targets, conflicting
results arise from several studies. For instance, no
association was observed between NAFLD and the
rs58542926 variant of TM6SF2 gene in Brazilian
patients with NAFLD™). MBOAT7 rs641738 variant
also did not show any correlation with steatosis in
chronic hepatitis B and C patients, as well as in obese
Taiwanese childrent®*®!, These results might be due
to the limitations of GWAS. In conventional GWAS,
the association is only significant when it reaches the
p < 5 x 10® threshold. Owing to this high level of
significance, the association might be undetected in
studies with small sample sizes. The use of larger
sample size is preferable even though it is not always
possible to assemble a large sample size. Besides,
GWAS cannot identify the causal variants and
genest*?. Therefore, further investigation of the SNPs
and genes of interest in vitro and in vivo is important to

261


http://dx.doi.org/10.52547/ibj.3647
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.4.7.4
http://ibj.pasteur.ac.ir/article-1-3647-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-20 ]

[ DOR: 20.1001.1.1028852.2022.26.4.7.4 ]

[ DOI: 10.52547/ibj.3647 ]

NAFLD-Associated Polymorphisms

Astarini et al.

fully understand their involvement in the development
and progression of the disease.

NAFLD is a complex disease. Many factors are
involved in its development and progression. This
review only presented the association of single genetic
variants with NAFLD. NAFLD is known to be
multigenic, involving the synergistic and antagonistic
actions of several genes, along with environmental
factors. Providing the information on combined
NAFLD-associated SNPs would be a point of interest
for future studies. We also could only infer the possible
involvement of the SNPs and genes with their
associated features in NAFLD from published
literature, further studies are required to investigate the
nature of their association.

CONCLUSION

Genetic factors are involved in the development and
progression of NAFLD. Identifying genetic factors in
NAFLD help to better understand the pathogenesis
pathways of the disease. The SNPs presented in this
review affect NAFLD through their involvement in
three  NAFLD spectrums (steatosis, fibrosis, and
inflammation). Mutations in PNPLA3, MBOAT?7,
TM2SF6, PTPRD, FNDCS5, IL-1B, PPARGCI1A,
UCP2, and NNMT directly induce steatosis in the
liver, while polymorphisms in TCF7L2, SAMMS50, IL-
6, and AGTRL1 genes indirectly promote liver steatosis
by increasing lipolysis in adipose tissue and skeletal
muscle, resulting in a higher supply of FFAs to
the liver. SNPs in PNPLA3, TNF-0, AGTR1, IL-17A,
IL-1B, PTPRD, and GATAD2A cause liver
inflammation. Inflammation, along with mutations in
IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-
6, NNMT, UCP, AGTR1, and TM2SF6 also
contributes to liver fibrosis. On the contrary,
polymorphism in the PTPRD gene can inhibit fibrosis
by preventing the transformation of HSCs to
myofibroblasts. Even though these NAFLD-associated
SNPs show potential benefits as therapeutic targets,
conflicting findings from similar studies arise due to
the limitations of GWAS. Therefore, further
investigation of those genes and SNPs in vitro and in
vivo is important to fully understand their involvement
in the development and progression of NAFLD.
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