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ABSTRACT

Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The
disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98
countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is
currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the
key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous
form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate
antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins,
Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite
vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review
the works conducted or being performed in this field. DOI: 10.52547/ibj.26.1.35
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INTRODUCTION

eishmaniasis is a vector-borne disease caused

by more than 30 species of Leishmania

parasites. The disease has a broad clinical
picture, ranging from skin lesions to fatal visceral
infections™  Leishmaniasis is endemic to four
continents and more than 98 countries™™. According to
the WHO, 350 million people are at risk for
leishmaniasis'®. Leishmaniasis is found in humans in
two main forms: CL and VL. Approximately 58,000
VL cases and 220,000 CL cases are reported
annually®™. The CL is divided into cutaneous,

List of Abbreviations:

mucocutaneous, and diffused cutaneous typest?. L.
tropica and L. major are the main causes of CL, while
L. infantum and L. donovani are the main causes of
VL. Different species of rodents in various parts of Iran
act as a reservoir for rural CL. These species include
Rhombomys opimus and Meriones libycus found in the
central and northeast, M. libycus, M. persicus, and M.
hurrianae in the south, as well as Tatera indica and
Nesokia indica in the west and southwest®*. The
Leishmania parasite is transmitted in the Old World,
including Europe, Africa, and Asia, by the bite of the
female sandfly of the genus Phlebotomus, and in the
New World, including America, by Lutzomyia. The

BT1, biopterin transporter; CC, complete cure; CFA, complete Freund's Adjuvant; CL, cutaneous leishmaniasis; CP, cysteine protease;
C. parvum; Cryptosporidium parvum; CPA, cysteine proteinase Type Il; CPB, cysteine proteinase Type I; CPB'CTE, CPB without its
unusual C-terminal extension; DC, dendritic cellsl; DHFR-TS, dihydrofolate reductase-thymidylate synthase; DT, double transfectants;
DTH, delayed-type hypersensitivity; i.d., intradermal; i.m., intramuscular; i.v., intravenous; MDP, muramyldipetide; MPL-A,
monophosphoryl lipid A; MVA, modified vaccinia Ankara; NO, nitric oxide; PBMC, peripheral blood mononuclear cells; ODN,
oligodeoxynucleotides; P. orientalis, Platanus orientalis; S.C., subcutaneous; SIR2, silent information regulatory; ST, single
transfectants; S. typhimurium, Salmonella typhimurium; TSA, thermal shift assay; VL, visceral leishmaniasis
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main hosts are vertebrates, and the most commonl
infected hosts include humans, dogs, and rodents®.
The sandfly family consists of five genera and 700
species, of which about 30 species are involved in the
transmission of the Leishmania parasitel®. Table 1
shows the main species of Leishmania that cause
human disease. Over the years, many types of research
have been conducted on the Leishmania vaccine. In
each of these studies, candidate antigens were
produced using improved laboratory techniques and
various experimental models were examined. An
overview of the results from the past to the present
investigations can provide a fruitful research strategy
for researchers. Meanwhile, such studies have shown
that different vaccine administration routes can affect
protective immunity. Despite the large number of
preclinical vaccine candidates, and approaches
designed to emulate this protective responsel”, the
successful transition of Leishmania vaccines into
human trials has remained elusive, though considerable
efforts are underway®®. Therefore, the purpose of this
article is to provide a more comprehensive review of
the current advances in leishmania vaccine
development.

Table 1. The main species of Leishmania that cause human disease

Immunity against leishmaniasis

Macrophages are the primary hosts for Leishmania,
but their role in preventing or progressing the disease
has been described in T-cell-dependent behavior;
however, the fate of the infected macrophages before T
cell presence is not well-known"™. Because
specileilized T cells apeare late in the infection, the
parasite is able to regulate disease progression in the
host.

Parasites can manipulate  killing mechanisms of
macrophages, at the time of their entry, and stimulate
the production of IL-4 and certain disease-stimulating
factors by T cells, leading to the progress of the
disease and survival of the parasite™. As soon as the
parasite diverts the CD40 signaling pathway to the pre-
parasitic pathway in macrophages, the interaction
between the CD40 ligand presented on activated T
cells surfaces and CD40 receptors of infected
macrophages cannot activate the anti-parasitic
pathway, and probably reaction of T cell-macrophage
does not maintain the host™. In addition to the host
apoptosis, stimulation of parasite apoptosis can be one
of the therapeutic goals to increase the effectiveness of
antiparasitic drugs. For instance, the study of Sengupta

Leishmania Disease form . T .
species in humans Geographical distribution Reservoir Vectors
Lelshmgnlal Loga“zed CL, Ethiopia, Kenya Rock hyraxes P. Iong_lpes
aethiopica Diffuse CL P. pedifer
North Africa, the Middle East and Central p tasi and
L. major” Localized CL Asia, Sub- Saharan Africa and Sahel belt, Rodents .Ppadpaba5| an
Sudan, North India, and Pakistan - duboscqr
L. mexicana”" Localized CL Central America Forest rodents Lutzomyia olmeca
L.amazonensis” Localized CL South America, north of the Amazon Forest rodents L. flaviscutellata
Localized CL South America, Forest rodents, Psychodopygus
L.braziliensis Mucocutaneous Central America and Mexico peridomestic Lutzomyia spp.
leishmaniasis animals
- . o L. verrucarurn,
L. peruviana Localized CL West Andes of Peru., Argentine highlands Dog L. pvmenis
VL Mediterranean basin; Middle East and o
L. infantum” _ Central Asia to Pakistan; China; Central Dogs, cats, foxes, P. perniciosus and
Localized CL and South America, southern Europe, and jackals P. arias
northwest Africa
Phiebotomus argentipes,
L d o Ethiopia, Sudan, Kenya, India, China, thHuman . P. orientalis, and
. donovani VL anthroponosis, Pseudostomatella

Bangladesh, Burma

Rodents Sudan,
canines

martini

“Old World species; “"New World species; P., Phlebotomus; L., Lutzomyia
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et al.™® showed that the natural indoloquinoline
alkaloid cryptolepine causes a decrease in the cell
viability of L. donovani AG83 promastigotes in both
time- and concentration-dependent manners by
increasing ROS and lipid peroxidation production and
decreasing cellular glutathione levels. The results of
Roy et al.'s™ study also indicated that the plant
carbazole alkaloid exerts in vitro and in vivo
antileishmanial activity by the modulation of redox
homeostasis.  Furthermore, about inducing host
apoptosis, researches have demonstrated the integration
of expressional cassettes containing pro-apoptotic
genes in Leishmania by transgenic method or
downregulating antiapoptotic molecule by miRNA
could accelerate the apoptosis process of infected
macrophages, restrict the possibility of differentiation
and induce more proliferation of Leishmania. These
events would result in the expansion of the disease, and
the appearance of the lesion™!. A study by Aghaei et
al."™ signified that the transgenic L. infantum
expressing mLLO-BAX-SMAC proteins can accelerate
the apoptosis of infected macrophages compared to
wild-type Leishmania. It means that transgenic
Leishmania is proved to increase the rate of apoptosis
in infected macrophages compared to intact strain.
Since metacaspases are the key regulators of death or
life of parasites, and these proteins do not exist in
mammals, they can be considered as targets for
fighting against parasitic infections in the future”).

Vaccination concepts in leishmaniasis

There are some facts to support the possibility of
developing an effective vaccine against CL. However,
due to the increased resistance to first-line drugs and
the toxicity of second-line drugs, the development of
an effective vaccine against the disease is very
desirable. The use of vaccines is advantageous over
chemotherapy as they induce long-lasting effects and
can be administered both in prophylactic and
therapeutic modes. Also, the vaccine will not counter
the problem of resistance as in the case of
chemotherapy™®. As stated in a study published by
Thomaz-Soccol et al.'!in 2018, the number of patents
for leishmaniasis vaccines is 74 in the United States
and 36 in Brazil. In Brazil, 20,000 cases of
leishmaniasis and more than 3,000 cases of VL, and in
India, 8,000 cases of VL are reported annually®®®.
Spain and France are still endemic for VL. In France,
for example, the prevalence of VL is 0.22 per 100,000
population in the endemic regions®®!. Therefore,
vaccination against leishmaniasis is essential in these
areas. Moreover, the highest number of patents was
reported in that study to be related to the private sector
(94 cases), and the lowest was related to cooperation

Iran. Biomed. J. 26 (1): 1-35

between universities and companies (11 cases);
however, universities and noneducational public
institutions had 65 and 13 patent cases, respectively?.
Therefore, the need for more cooperation between
public and private institutions seems to be necessary.

Challenges of efficient vaccine design

To date, many attempts have been made to test
clinically prepared vaccines in various human trials,
but they have been ineffective. It is widely believed
that this [problem arises from economic and financial
pressures??l. Some studies have shown that using the
whole parasite leads to inefficient antigen presentation
and anti-Leishmania memory cell development, thus
reducing immunity®?!. Also, preserving central
memory T cells does not require the presence of
parasites’®®). There may not have been a suitable human
adjuvant system for testing these vaccines!?’?%.
Vaccination provides long-term protection in the
absence of attenuated strains such as LACEN™ (centrin
mutant) or PMMA (phosphomannosemutase). This
finding was performed in a mouse model and not in
humans. Injection of protective antigens in different
models or immunotherapy has helped to find the
factors involved in increasing anti-Leishmania
immunity. One of the major problems facing the
vaccine against CL is the fact that despite causing
cutaneous disease, the Old and New World parasites,
L. major and L. mexicana/L. amazonensis,
respectively, are significantly different®. There are
differences in virulence factors between these species,
as well as in the immune responses induced by them.
For instance, LPG is a virulence factor for L. major®",
but not for L. Mexicana®. During L. major infection,
the protective role of Thl responses has been
established, but L. amazonensis can persist in the
presence of Thl responses and cause minimal disease
in the complete absence of T cells®. These findings
show major, but not well-understood, differences in the
immunobiology of parasites that appear to cause the
same disease. This matter may have implications for
the vaccine development process as the anti-CL
vaccine may have different needs for the Old and New
World leishmaniases. Therefore, a vaccine against CL
caused by L. major might not necessarily be effective
against the New World spectrum of diseases, including
mucocutaneous and diffuse cutaneous forms. Another
challenge for the vaccine is to obtain protection against
VL even if it is efficacious against varied forms of CL.

Immunization methods against CL
Leishmanization

Adler observed that Lebanese children whose arms
have been exposed to infected mosquitoes by their
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mothers will be protected against severe forms of the
disease in the future*. This process was not followed
because it caused uncontrolled growth of skin lesions
and also led to a high prevalence of the disease in
people with suppressed immune systems, particularly
those with HIV and organ transplants®®2®. The first
method of immunization against leishmaniasis known
as "leishmanization” was developed in 1940 and has
been used in various countries for several years?®".
This vaccine was discontinued due to its lack of safety
and is now limited to the vaccine registered in
Uzbekistan and the vaccine used in clinical trials in
Iran®*% In this procedure, live and active L. major
promastigotes are injected intradermally into the
anatomical position of the deltoid muscle. An active
ulcer then develops and eventually heals on its own.
The result of this method is long-term immunity
against rural and urban leishmaniasis. Tables 2 and 3
shows leishmanization experiments in Iran and USSR
countries.

First-generation vaccines

These vaccines contain the whole body of the
parasite with or without adjuvant®®®. First-generation
vaccines replaced leishmanization, and the vaccine is
now used in some human trials. These categories
include Kkilled, live attenuated, and fractionated
vaccines*”. Table 4 lists the first-generation vaccines
with full specifications.

Killed vaccines

This type of vaccine was developed and evaluated by
Mayrink et al. in Brazil™*. The result of the
leishmanin skin test was satisfactory, but the vaccine
had only a 50% protective effect. In Venezuela,
Sharples et al.l*® used a mixture of killed L.
amazonensis, L. mexicana, and Bacillus Calmet Guerin
to treat CL, resulting in a 95% improvement and
activation of Thl immunity?**%. Studies in Brazil
have shown that a mixture of killed L. amazonensis
with half a dose of meglumine antimoniate is very
effective in treating CLI*!. According to a study
conducted in Ecuador, a proportion of L. brasiliensis,
L. guianensis, and L. amazonensis provided favorable
protection against CLY“**. Two studies in Iran have
shown that autoclaved L. major vaccine with BCG is
safe but does not provide promising immunity against
CLB%*M. The results of a study by Mahmoodi et al.*
revealed that cases who received the ALM + BCG
vaccine had a higher stimulation index and IFN-y
levels than those who received BCG alone or in the
control group. The results of this study showed that the
induction of Th1l immune response in volunteers who
received the vaccine was much lower than those with

or without a previous history of leishmaniasis, and it
was assumed that these individuals became immune!®.
Thl is activated in L. major infection, but L.
amazonsensis can remain active in the presence of Thl
and can reduce the T cell response. Therefore, the
vaccine made for L. major is neither effective for
another leishmaniasis nor VL. In general, vaccination
with Kkilled Leishmania promastigotes could be
considered as a safe and economical treatment;
nevertheless, further trials aiming at the evaluation of
different adjuvants potentially pave the way for more
efficient vaccines™.

Live attenuated vaccine

These vaccines are currently the gold standard. In
attenuated live vaccines, the parasite is both
nonpathogenic and superior to killed vaccines®”.
Methods of preparing attenuated live parasites include
long-term in vitro culture®™!, use of temperature
sensitivity®®,  gamma  radiation®,  chemical
mutagenesis®®, and culture with gentamicin®®. Titus
and co-workers®! developed a live attenuated vaccine
by knocking down certain Leishmania genes.
Examples in this regard are the DHFR-TS® and the
Ip2 gene, which encodes an enzyme, transports
guanosine diphosphate mannose to the GoI%i
apparatus®®¥, the Ipg2 mutant from L. mexicana®,
the CP (cpa and cpb) from L. mexicana®®®, the SIR2
from L. infantum®! and the BT1 gene from L.

donovani®.

Suicidal cassettes

Muyombwe et al.® followed a method of producing
a vaccine against leishmaniasis, which was to induce
suicide genes. This method is performed by inducing
drug-sensitive genes. They used a combination of
thymidine kinase and gancyclovir against L. major and
finally using gancyclovir treatment, partial to complete
protection was achieved” ™. Besides, the susceptible
strain of L. major, which contained the altered
thymidine kinase HSV-1 (tk) gene and the  cytosine
deaminase gene from  Saccharomyces cerevisiae
(cd), increased susceptibility to gancyclovir and
5-fluorocytosine. L. major infection recovered
within two weeks of treatment with either drug alone
or in combination with ganciclovir and 5-
fluorocytosinel’®™.

Fractionated vaccine

This kind of vaccine is advantageous due to its high
purity and yield. Several molecules, either membrane
proteins, such as HASPB1 and A2 protein, or
soluble fractions of the parasite, i.e. PDI, TPI, elF-2,
aldolase, enolase, P45, tryhpanothione reductase, and

Iran. Biomed. J. 26 (1): 1-35
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Table 2. Leishmanization experiments in Iran

v Studv ol No.of Leishmania Infected with c t Ref
ear udy place individuals species disease (%06) ommen et
L. tropica Cross protection against 1m
1946 Tehran 120 major 90 L.tropica minor
The incidence rate of CL in 112,113
1977 Isfahan 250 L. major 47 leishmanized children
was one-sixth to one-seventh to
control group.
Under 1% of new cases of CL 112,113
198%2 'ngiir]lj”d 160,000 L. major 89.5 were among
leishmanized people.
1983- On army recruits 1800,000 and Reduction of the incidence rate
logg  andrevolutionary 6000 refugees L. major 56.7-90 of CL by Leishmanization 13114
guard among leishmanized people
between one-sixth to one-eighth
of its original level
. Total protection was seen in 15
2005 Tehran 28 L.major 100 100% (11/11) of volunteers.
Individuals unvaccinated 61.5% in
1989 receiving NLCV individuals . vaccinated With 27% protection in the 116
(no. 27) (n0.30) L. major and 90% in NLCV group
unvaccinated
individuals
Deep-fr_eeze Production of L. major_ under unpublished
2001  Isfahan Province 200 promastigote 40-45 good manufacturing
forms of L. practices condition
major at Razi Institute

NLCV, nonliving crud vaccine

recombinant F14, among others have been used as a
potential target for vaccination, both against cutaneous
and VL. Also, some polyproteins have been tested with
some degrees of success (Q protein, Leish-111f, 110f
etc.)".

Second-generation vaccines

Second-generation vaccines are based on synthetic or
recombinant subunits and genetically modified
Leishmania strains, recombinant bacteria, or viruses
carrying Leishmania antigen genes™ !, A summary of
these vaccines against Leishmania is given in Table 5.

Vaccines based on nonpathogenic Leishmania

In 2015, Katebi et al.l’® showed that vaccination
with L. tarentolae-PpSP15 in combination with CpG as
a prime-boost modality confers strong protection
against L. major infection, which was superior to other
vaccination methods discussed in the present study.
This approach represents a novel and promising
strategy for vaccination against Old World CL. In

Iran. Biomed. J. 26 (1): 1-35

2014, Zahedifard et al.l"”! demonstrated the effect of a
novel combination of protective parasitic antigens
created by L. tarentolae, together with sandfly salivary
antigen as a vaccine strategy against L. major infection.
The immunogenicity and protective effect of different
DNA/Live and Live/Live prime-boost vaccination with
live L. tarentolae expressing CPs (type | and II,
CPA/CPB) and PpSP15 from Phlebotomus papatasi,
were tested in BALB/c and C57BL/6 mice. Both
humoral and cellular immune responses were assessed
before challenge and at 3 and 10 weeks after
Leishmania infection. In both strains of mice, the
strongest protective effect was observed when the mice
primed with PpSP15 DNA and then received PpSP15
DNA and live recombinant L. tarentolae as a
booster”. In 2015, Shahbazi et al.® vaccinated
outbreed dogs with a prime-boost regimen based on
recombinant L. tarentolae expressing the L. donovani
A2 antigen, along with CP genes (CPA and CPB™)
and evaluated its immunogenicity and protective
immunity against L. infantum infectious challenges.
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Table 3. Early leishmanization experiments in USSR countries*'”!

Infected with

Year Inoculum Number disease (%) Comment Ref.
1942-1968 1.5 x10° 647 60-90 Used infected hamster tissue 118
1972 1.0 10° 65 100 A new isolate replaced older ineffective strain e
1978 2 x10° 475 14-100 High level of nodules 118
1979 4x10° 39 100 Pretest of frozen vaccine 118
1968 0.8 x 10° 2245 98 93.2% of ulcers <2 cm at 2 months 120
1968 0.1-1.2 x 10° 12500 90 Found little influence of culture age, medium or number %
2018 - 9500 96-100 - 118

They showed that vaccinated animals produced
significantly higher levels of 1gG2, but not 1gG1, as
well as IFN-y and TNF-a, but low IL-10 levels, before
and after challenge as compared to control animals.
Protection in dogs was also associated with a strong
DTH response and a low parasite burden in the
vaccinated group. Overall, immunization with
recombinant L. tarentolae A2-CPA-CPB“™® proved to
be immunogenic and induced partial protection in
dogs, hence representing a promising live vaccine
candidate against canine VL. In 2013, Saljoughian
et all used a tri- gene fusion recombinant L.
tarentolae expressing the L. donovani A2 antigen,
along with CPs, as a live vaccine. Their results showed
that immunization with both prime-boost A2-CPA-
CPB“™E-recombinant L. tarentolae protects BALB/c
mice against L. infantum challenge. This protective
immunity is associated with the Thl immune response
due to the high levels of IFN-y production before the
challenge, leading to a significant increase in the IFN-
v/IL-10 ratio compared to the control groups. In
addition, this immunization induced an elevated level
of IgGl and 1gG2a humoral immune responses.
Protection in mice was also associated with a high NO
production and low parasite burden. Altogether, these
results indicate the potential of the A2-CPA-CPB™"E-
recombinant L. tarentolaeas a safe live vaccine
candidate against VL.

Lactococcus lactis as a tool for Leishmania
vaccination

L. lactis is a well-defined, food-grade lactic acid
bacterium commonly known as generally recognized as
safe status. A better understanding of this bacterium at
a molecular level has led to the development of
unprecedented genetic tools that enable the expression
of heterologous proteins. Consequently, the ability of
L. lactis to express and deliver these proteins to
eukaryotic hosts offers a promising approach to
achieve potent treatments for various diseases.
Currently, 13 genera have been classified under the

6

lactic acid bacterium group, including Lactococcus,
Lactobacillus, Streptococcus, Pediococcus, Para-
lactobacillus, Enterococcus, Carnobacterium, Lacto-
sphaera, Leuconostoc, Oenococcus, Tetragenococcus,
Weisella, and Vagococcus®®. In 2012, Hugentobler et
al.®Y described the generation of L. lactis(alr-) strain
as the vector expression of the protective Leishmania
antigen, LACK, in the cytoplasm, secreted or anchored
to the bacterial cell wall or co-expressing mouse 1L-12.
They showed that oral immunization using live L.
lactis, secreting both LACK and IL-12, was the only
regimen that partially protected BALB/c mice against
the next L. major challenge. This issue highlights the
importance of temporal and physical proximity of the
delivered antigen and adjuvant for optimal immune
priming by oral immunization. In 2019, Torkashvand
et al.® expressed F1S1 fusion protein, including the
N-terminal region of S1 subunit of PT and FHA typel
immunodominant domain by L. lactis, and evaluated
its immunogenicity. Based on their results, mice
immunized with LL-F1S1 produced significant levels
of specific IFN-y compared to controls and DTaP-
immunized mice. The F1S1-specific 1gG antibody
response was lower in LLF1S1-immunized mice, while
the 1gG2a/lgGl ratio was higher in this group
compared to the DTaP-immunized mice. In 2020,
Davarpanah and co-workers®! explained that PpSP15
is an immunogenic salivary protein from P. papatasi.
Immunization with Lactococcus lactis expressing sand
fly PpSP15 salivary protein has been shown to protect
against L. major infection. In their study, BALB/c mice
were challenged with L. major plus P. papatasi
salivary gland homogenate. Evaluation of footpad
thickness and parasite burden displayed a delay in
disease development and reduced the number of
parasites in PpSP15 vaccinated animals as compared to
the control group. In addition, vaccinated
mice exhibited Thl type immune responses.
Importantly, immunization with L. lactis-PpSP15-
EGFP®*® enhanced long-term memory in mice, which
lasted for at least six months.

Iran. Biomed. J. 26 (1): 1-35


http://dx.doi.org/10.52547/ibj.26.1.35
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.1.8.9
http://ibj.pasteur.ac.ir/article-1-3523-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-11-02 ]

[ DOR: 20.1001.1.1028852.2022.26.1.8.9 ]

[ DOI: 10.52547/ibj.26.1.35 ]

Abdellahi et al.

Vaccine and Leishmania

Table 4. Types of first-generation vaccines against Leishmania

Vaccine form/

Animal

Targeted disease

Summary of the

Antigen adjuvant/del. system model (Leishmania spp.) experimental system Result Another outcome Ref.
Path ic 104 i Immunized through the ear s.c. route more effective enhanced
L. major a ogemf_ i Ive C57BL/6 CL/L. major (i.d.) and footpad (s.c.). Protection IFN-y and IL-10 levels in s.c. and 38
promastigotes Challenged 7 weeks later with i.d. immunization, respectively.
10° promastigotes
- Immunized by intraperitoneal or _— 55
. Nonpathogenic live C57BL/6 . - . Complete protection in C57BL/6
L. major . CL/L. major subcutaneous injection. Protection - ] . .
promastigotes BALB/c Challenged with pathogenic mice while partial in BALB/c mice
promastigotes
Immunization with Nmethyl- Immunity conferred and 56
L. braziliensis  Avirulent L. braziliensis ~ BALB/c CL/L. major N'-methyl-N'- Protection
nitro-N-nitrosoguanidine transferred by Lyt-1+ cells
treated promatigotes
Immunized through LN cells activated infected
L. major y-irradiated L. major CBA CL/L. major subcutaneous injection. Protection macrophages in vitro to o
Challenged with two strains of kill the parasite
L. major
Vaccination with CD4"* T-cell
. LPG deficient avirulent . . - : . Enhanced TNF and IL-2 production,
L. major eLICrI]fQ-OiV"u en BALB/c CL/L. major line derived from avirulent Protection nsﬁncreessed ”_a_r;r ne at?\sg SJ-T-:)n 58
-may promastigote immunized mice. PP +Neg
Challenged with a virulent
strain
L. mexicana  Long-term culture of 5 x CL/L. mexicana/L.  Immunization with s.c. injection Lesion size reduced by 80%,
L. major 10° promastigotes with BALB/c major followed by challenge with 5 x Protection significantly reduced infected 59
gentamycin 10° wild type promastigotes macrophages
L. donovani L. Long-term culture of . Immunized subcutaneously .
infantum promastigotes with BaLBlc VUL donovani/L. o) 0ved by challenge with wild Protection Percentage of infected macrophages 5,

gentamycin

infantum

type promastigotes

reduced by 91-99%
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Anti Vaccine form/ Animal Targeted disease Summary of the Result Anoth t Ref
ntigen adjuvant/del. system model (Leishmania spp.) experimental system esu nother outcome et
. Attenuated 107 . Challenge with virulent . 122
L. chagasi promastigotes BALB/c VL/L. chagasi promastigotes No protection
. . . . Immunization (s.c.) and . 88% parasite reduction, increased
7 122
L. chagasi 10" live promastigotes BALB/c VL/L. chagasi challenged both with 107 live Protection IFN-y, IL-10, and IL-4 levels, low
promastigotes TGF-B level
102 or 10° i Immunization (s.c.) with 10 or Int diat No protection in 10? doses, low IFN-
L. chagasi or " Itve BALB/c VL/L. chagasi 10 promastigotes and n ertmet.la € v, high TGF-f levels, no effect on 122
promastigotes challenged with 10 live protection IL-10 and IL-4 production as
promastigotes compared to control
L. major L. 102 and 10 live . Challenged with 10° L. chagasi ) 12
chagasi promastigotes BALB/c VLIL. chagasi promastigotes No protection
L. chagasi L. . Challenged with 107 virulent L. . A negligible amount of IFN-y 122
donovani L. DHER-TS Fnoi:k-out BALB/c VL/L. chagasi chagasi No protection Release
major romastigotes
BALB/c Immunization through s.c., i.v. i.v. route, parasite burden reduced
L. major DHER-TS knock-out BALB/c CL/L. major and i.m. routes. Challenged Protection by158-1990 fold in BALB/c mice, 60
promastigotes (nu/nu) with 10° virulent promastigotes i.m. and s.c. the route also produces
CBA/T6 protection in CBA mice but not in
BALB/c mice.
DHFR-TS knock-out BALB/c | iation throudh i 108 dose developed 40-75% and 49—
L. major promastigotes 10%, 10°, C57BL/6  CL/L. amazonensis mmunlzda lon r?ug V. Partial protection 57% smaller lesion size in BALB/c 123
and 10° dose ands.c. routes and C57BL/6 mice, respectively
Immunization subcutaneously Positive proliferative response
L. major DHFR-TS knock-out Monkey CL/L. major and challenged with 107 No protection (79%), no IFN-y production, 124

108 promastigotes

promastigotes

negative DTH response

Iran. Biomed. J. 26 (1): 1-35


http://dx.doi.org/10.52547/ibj.26.1.35
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.1.8.9
http://ibj.pasteur.ac.ir/article-1-3523-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-11-02 ]

[ DOR: 20.1001.1.1028852.2022.26.1.8.9 ]

[ DOI: 10.52547/ibj.26.1.35 ]

Abdellahi et al.

Vaccine and Leishmania

Anti Vaccine form/ Animal Targeted disease Summary of the Result Anoth t Ref
ntigen adjuvant/del. system model (Leishmania spp.) experimental system esu nother outcome et
- . Protection only in Enhanced IFN-y production with
6 3
L mai Live promastigotes I{r;)rsnuSnézitlloor; V\ftlh 33623 :r %307‘ 1lx 10_2 Borderline I_ow 1gG1/1gG2a ratio in protected 6
. major Different doses BALB/C CL/L. major N 1'01 Hose Ct’1alllen . V\;ith 166 disease in half of the  mice, Th1/Th2 response (both IFN-y
: fi ? 3 x 10% dose no and IL-4 levels high) in borderline
promastigotes protection in other disease mice, and Th2 response in
doses progressive disease mice.
L. major Ipg2—mutant . Immunization (s.c.) with 5 x . Suppressed IL-10 and 1L-4
promastigotes BALB/c CL/L. major 10° promastigotes and Protection production, low IFN-y level, 62
challenged with wild type 2 x negative DTH response
10° parasites
. Alpg2—mutant . Immunization with Alpg2 with . 100 fold parasite reduction, no IFN- 125
L. major promastigotes + CpG C57BL/6 CL/L. major a single dose of CpG ODN (50 Protection v production, no DTH response
oligonucleotides ug)
CP mutant BALB/c Immunization (s.c.) with Increased IFN-y and IL-2 levels with
L. mexicana mma”;gi a(;‘tes C57BL/6  CL/L.mexicana 5 * 10° Acpa or Acpb or both. Protection low IL-4, no difference in IL-5, IL- &
P g CBA/Ca Challenged with 10° wild type 10, and IL-12 levels, high 1gG2a/
promastigotes 1gG1 ratio
. . . Immunization (i.d.) with 10° . High IFN-y, no difference in IL-10 66
L. mexicana CP deﬁtgler;t Hamster CL/L. mexicana Acpb or Acpa/cpb Protection while TGF-B, IL-4, and IL-12 p40
promastigote promastigotes and challenged not detected
with wild type
L. mexicana
Immunization (i.p.) with 108 Enhanced NO level, high IFN-y/IL-0
L. infantum SIR?2 deficient BALB/c VL/L. infantum promastigotes and challenged Protection ratio, no difference in IL-4 and 1L-2 67

with 10® wild type
promastigotes

levels, high 1gG1 and 1gG2a titer
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Anti Vaccine form/ Animal Targeted disease Summary of the Result Anoth t Ref
ntigen adjuvant/del. system model (Leishmania spp.) experimental system esu nother outcome et
Immunization (i.v.) with 5 x .
- . Infection rate reduced by 75%
. BT1 knock-out ; 10" mutant promastigotes. Protection : ' 68
L. donovani oromastigotes BALB/c VL/L. donovani Challenged with 5x107 increased Ilr:g\(lj-l}/citia(\)/r?l, no IL-4
luciferase-expressing virulent P
promastigotes
. Immunization (i.p.) with 5 x 80-85% parasite reduction, enhanced
Nonpathogenic L. . 6 : : i 126
L. tarentolae - oo o6 nromastiqotes  BALB/C VL/L. donovani 10° promastigotes and Protection IFN-y production, no IL4,
P g challenged with 5x10 virulent spleen cell proliferation
L. donovani promastigotes increased by 17 fold
. Suicide system of . Mice infected by tk-transfected . 69
L. major promastigotes with BALB/c CL/L. major or wild type promastigotes and Partial to complete -~
thymidine kinase gene treatment given by ganciclovir
of HSV-1
thecd*™ transfected Mice infected with tk-cd** Mice infected with transfected
L. major -C r?ps tec € BALB/c CL/L. major transfected and wild-type Protection promastigotes were completely n
promastigotes promastigotes. Treatment is cured by either or both drugs.
given by ganciclovir and
5-fluorocytosine
L. Porphyrogenic (DT) and Hamst VLL. d . Photodynamic vaccination with 99% parasite reduction, increased
amazonensis  non-porphyrogenic (ST) amster - donovant DT + ALA, DT - ALA, ST + Protection DTH, and lymphoproliferative 127
transfectants ALA, or ALA. Challenged with response, high IFN-y, iNOS, and
107 amastigotes IL-12 expression, high IgG2a titer
H injecting one milliliter of the
] uman fraction intracutaneously in four ) 128
L. infantum and CL different points of the skin. Protection
animal These were people who had
been ill for at least three months
10 Iran. Biomed. J. 26 (1): 1-35
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Table 5. Second-generation vaccines against Leishmania

Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
Protection only in CBA mice, 67-78% parasite
gp63 S. typhimurium CBA, BALB/c CL/L. major Protection reduction, activated CD4+ T cells which secret IFN-y 12
and IL-2 but not IL-4, negative DTH response
Antigen alone reduced the lesion size comparable to
gp63 Alone and along with CBA, BALB/c CL/L. major Protection those of gp63 + BCG, protection induced by gp63 + 150
BCG or C. parvum or adjuvant varied depending on the site of vaccination
MDP relative to that of the challenge
rgp63 C. parvum BALB/c CL. No protection s
. . . . Positive DTH response, no IFN-y production, 132
rgp63 E. coli Monkeys CL/L. major Partial protection high 1gG antibody level
gp63 Liposomes liposomes CBA CL/L. mexicana protection The protection conferred only by gp63 + liposomes 18
+ CFA
A . - Activated T cells secreted IFN-y and IL-2 but not IL-4, %0
rgp63 S. typhimurium BALB/c CL/L. major protection high 1gG2a levels, no IgG1, negative DTH response.
N CL and VL/L. major or L. . Protection induced against both species, 134
rgp63 S. typhimurium BALB/c donovani Protection high IFN-y level, IL-2, and IL-4
not detectable, negative DTH response.
L F1 (BALB/c . . High IFN-y and IL-2 mRNA 135
rgp63 S. typhimurium C57BLI6) CL/L. mexicana Protection expression but not IL-4 and 1L-10
. . . Protection against L. mexicana and L. major in both 136,137
rgpé3 Transfected BCG BALB/c CBA/J CL/L. mexicana or L. major Protection mouse strains, strong lymphoproliferative response.
86% and 81% parasite reduction in liver and spleen
gp63 Cationic liposomes BALB/c VL/L. donovani Protection respectively, high IFN-y and IgG2a levels even after 1
challenge, low IL-4 production,
positive DTH response.
Iran. Biomed. J. 26 (1): 1-35 11


http://dx.doi.org/10.52547/ibj.26.1.35
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.1.8.9
http://ibj.pasteur.ac.ir/article-1-3523-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-11-02 ]

[ DOR: 20.1001.1.1028852.2022.26.1.8.9 ]

[ DOI: 10.52547/ibj.26.1.35 ]

Vaccine and Leishmania

Abdellahi et al.

Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
gp63 or rgp63 E. coli Human CL/VL Protection strong proliferative response to both species, high IFN- 140
v production in PBMC culture upon antigen
stimulation.
. Protection only by PT3 (p154-168), enhanced IL-2 but
Peptide 6P3T3 of Poloxgrger olr %FA BALB/c CL/L. major Protection not IL-4 production, no lesion in the second study 141-144
9p or pulse while reduced lesion development in the third study
Transfected L929 CL/L. major or L. Protection Both strains of mice protected against both 145
rgp63 cells with BALB/c C57BL/6 amazonensis parasite species, high IL-12 production
CDA40L + gp63
. . C. parvum gave better results, followed by saponin,
M-2 C. parvgrg:aponm CE@EQ_&E/C CL/L. amazonensis Vatrla?_le complete protection in CBA, partial in BALB/c, and 148
protection no protection in C57BL/6, protection correlated with
increased 1gG1 and 1gG2
S . . IL-2, IFN-y, and IL-4 production, high IgG1, 147
GP46/M-2 Vaccinia virus BALB/c CL/L. amazonensis Protection 1gG2a, and IgM with low 1gG3 and IgG2b
100-fold parasite reduction, predominant
PSA-2 C. parvum C3H/He CL/L. major Protection IgG1 with IgG2a and 1gG2b before the 148
challenge, high IFN-y but no 1L-4 level
rPSA-2 Transfected E. coli + C3H/He CL/L. major No protection HIIghGI; N_IY gr;; uCt:jon’ hlkglr Iégil, 149
C. parvum ISCOM g9GZa, 19 , ana weak Ig
. . Upregulation of IFN-y and 150
LACK/rp24 IL-12 BALB/c CL/L. major Protection downregulation of IL-4 transcripts
Mice protected only when challenged after two weeks
rLACK riL-12 BALBI/c CL/L. major Protection of last immunization, not protected when 87

challenged after 12 weeks of immunization,
high IFN-y (after two weeks)
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
After the challenge, the IFN-y level decreased to the
rLACK riL-12 BALB/c CL/L. amazonensis Protection levels of IL-10 and IL-4, high anti-LACK and 51
parasite-specific antibodies
. . A slight increase in IFN-y level, IL-10, and 152
rLACK - BALB/c CL/L. amazonensis No protection IL-4 levels comparable to PBS control.
84.4% reduction in liver parasite burden, 79.1% and
EML Saponin BALB/c VL/L. donovani Protection 89.1% increase in proliferative and antibody responses 153
respectively, high antibody level.
94.7% liver parasite reduction, no change in IFN-y
. . ) level while significant decrease in IL-10 production, 154
FML Saponin BALB/c VL/L. donovani Protection high DTH response, increase in 1gG, IgM, 1gG1,
1gG2a, and 1gG2b anti-FML antibodies
. . . . . 85.5% reduction in liver parasite burden, 155
FML Saponin Swiss albino VL/L. donovani Protection 80% increase in the antibody response
85% and 88% liver parasite reduction in FML +
FML Saponin aluminum Swiss albino VL/L. donovani Protection saponin and FML + AI(OH)3 group respectively, 156
hydroxide increased 1gG2a level in the former group, similar
1gG2b, and 1gG3 in both vaccines
FML Saponin Hamster VL/L. donovani Protection Positive DTH response, high anti-FML antibodies. 157
Saponins (Riedel De High anti-FML 1gG1, 19gG2a, and 1gG2b, positive
EML Haen(R), QuilA, Swiss Albino VL/L. donovani Protection DTH response, 73%, 93%, and 79.2% liver parasite 158
Qs21), IL-12 reduction in R-FML, QuilA-FML, and Qs21-FML
vaccinees respectively, high IFN-y level in QS21-FML
and R-FML vaccines
Eracti f Riedel 95% and 86% liver parasite reduction in QS21-FML
EML D ra|_(|: 1ons o SZIle € q ] ) ] ) and deacylsaponins-FML vaccinees respectively, 159
€ d aenI—Q - an Swiss Albino VLI/L. chagasi Protection positive DTH response, high IFN-y production, high
eacylsaponins 19G, 1gG1, 1gG2a, IgG2b, and 1gG3 in QS21-FML
vaccinees but not in deacylsaponins
: _ _ 1% li [ ion, high 1gG2a, 19G2 160
GP36 Saponin BALB/c VL/L. donovani Protection 68.1% liver parasite reduction, high 19G2a, 19G2b,

and IgG1 antibodies, positive DTH response

Iran. Biomed. J. 26 (1): 1-35
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
FML Dogs VL Protection 929% protection achieved after two years, 161
vaccinees showed positive DTH response.
FML QuilA Dogs VL Protection 95% protection achieved, positive DTH response 162
FML QuilA Dogs VL/L. donovani Protection 60% dogs protected, high anti-FML IgG, 19G2 163
. - 90% dogs protected, 79-95% positive 162
FML Saponin Dogs VL Protection DTH response, high IgG2 than IgGL1
. . Highanti-FMLantibodies, 82.7% positive DTH 164
FML Saponin Dogs vL Protection response, increase in CD8" TandCD21" Beells
. . Act as a transmission-blocking vaccine,
FML Saponin Dogs VL Protection high IFN-y, NO. and 1gG2 production, 165-168
high CD8" T cell proliferation
LIESA MDP Dogs VL/L. infantum Protection 92% vaccine efficacy, high IgG2 level, enhanced IFN- 16917
vy and no production while no change in IL-4 level
LiESA MDP Dogs VL/L. infantum Protection Increased IFN-y and anti-LiESA 1gG2. m
level, positive DTH response
Recombinant CP IL-12 C57BL/6 CL/L. mexicana Protection e 172
(rCP5)
. . Enhanced splenocyte proliferation and 173
CP CFA BALB/c CL/L. major Protection IFN-y level, no IL-5 production.
rCPA . . . Only by rCPB, enhanced IFN-y level, 174
'CPB Poloxamer 407 BALB/c CL/L. major Partial protection equal 1gGL, and IgG2a antibody levels
L . . . High 1gG2a, enhanced IFN-y 17
rCPA/rCPB Fused hybrid in BALB/c CL/L. major Partial protection production with little IL-5
pET23a
B _ ; 176
Peptide I of CP CBA CL/L. amazonensis Protection Enhanced IFN-y, IL-4, and NO production,

Proliferation of CD8* T-cell subsets
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
rGRP78 CFA C57BL/6 CL/L. major Protection 83% mice protected. 18
78kDa - BALB/c VLUL. donovani - Increase in 1gG2a levels, low 1gG1 e
MPL-A, liposomal 92%, 93.4%, and 98% liver parasite reduction by 78
78 kDa encapsulation, rlL- BALB/c VL/L. donovani Protection kDa+MPL-A or liposomal encapsulation 180
12, ALD, CFA or rlL-12 vaccinees, enhanced IFN-y and
IL-2 levels with low IL-4 and IL-10, positive DTH
response, high 1gG2a level
P4 Only P4 and P8 gave protection and P8 gave cross- 181
P8 C. parvum BALB/c CL/L. pifanoi/L. amazonensis Protection protection, high IFN-y level while
A2 no change in IL-2 level
N . CD4" T-cell related protection, high IFN-y, MIF, TNF- o,
P4 P. acnes BALB/c CL/L. pifanoi Protection o mRNA expression, high IL-2 level, and no change in
IL-4 level
. High IFN-y and TNF-a expression in 183
B Dogs VLIL. infantum P8-stimulated PBMC, low IL-4 but no IL-10 level
P4 H oL Enhanced IFN-y and IL-2 levels in respective antigen- 184
P8 uman - stimulated PBMC culture, extremely low IL-4 level
P4 Human cL Enhanced IFN-y level in P4-stimulated PBMC culture, %
IL-4 detectable
. . 89% liver parasite reduction, enhanced IFN-y level, no 186
rA2 P. acnes BALB/c VL/L. donovani Protection change in IL-4 level, high IgG1, IgG2a, IgG2b, and
1gG3
. . High IFN-y production, enhanced CTL activity 187
Az BALBIc VL/L. chagasi Protection mediated by CD8" T cells, low antibody response
. . . . Enhanced IFN-y while low IL-10 production, 188
rA2 Saponin Dogs VLI/L. chagasi Partial protection increased 1gG and 1gG2 but not IgG1
91% liver and 70-90% splenic parasite reduction in
rHASPB1 IL-12 BALB/c VL/L. donovani Protection rHASPB1 vaccinees, increased IL-12 production by 189
DC, exclusive 1gG1 response, increased IFN-y
producing CD8" T cells.
Iran. Biomed. J. 26 (1): 1-35 15
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
5 ——— — -
rHASPB1 Montanide Dogs VL/L. infantum Partial protection 50% dogs asymptomatlc,tir:é?h anti-HASPBL antibody 109
CFA BALB/c . . . In infected mice, high IFN-y production in 101
rLerl Ribi adjuvant C3H VLIL. chagasi Partial protection both mice, detectable IL-10 but not IL-5 levels in
splenocytes to Lcrl stimulation.
rLerl BCG expressing Lcrl BALB/c VL/L. chagasi Protection High IFN-y and reduced IL-10 102
production, no detectable 1L-4.
rH1 Montanide Monkeys CL/L. major Partial protection High antibody levels, positive DTH response. 108
rH1 IL-12 . . . Partial protection even in absence of adjuvants, 89
peptides of H IFA BALB/c CL/L. major Partial protection LP1-3 also gave partial protection.
. . . Detectable anti-ORFF antibody titer, 104
rORFF CFA BALB/c VL/L. donovani Partial protection the proliferation of spleen cells
. . 84% liver parasite reduction, enhanced IFN-y and 195
rORFF CpG ODN BALBI/c VL/L. donovani Protection IgG2a production, NO production dose-dependent.
. . . 45-60% parasite reduction, low 1gG2a/lgG1 ratio, 196
rORFF BALB/c VLI/L. donovani Partial protection high IFN-y, and TL-12 as compared to controls.
. . 82% parasite reduction, enhanced IFN-y, IL-12, and 197
rORFF IL-12 DNA BALB/c VL/L. donovani Protection IgG2a production, no change in IL-4 level, enhanced
splenocyte proliferation.
. C57BL/6 . . Complete protection only in C57BL/6 mice, partial in 108
rLiPo CpG ODN BALB/c CL/L. major Protection BALB/c, 150-fold parasite reduction, high IFN-y, and
IgG2a production
Ribosomal proteins BALB/c . . Protection in both strains, 3 fold parasite reduction, 199
(LRP) CpG ODN C57BL/6 VLIL. major Protection high IFN-y level and IgG2a/IgGl ratio, no increase in
IL-4, detectable IL-10
rKMP-11 ts-mut&r&gxi)gessmg BALBI/c CL/L. major Partial protection - 200
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
. . . - Enhanced IFN-y, IL-4, and 1L-13 201
rKMP-11 Hybrid cell vaccine BALB/c VL/L. donovani Protection expression but not 1L-10
. . Only female hamster protected against L. panamensis, 202
rPFR-2 FIA Hamster CLI/L. par!amen5|s/L. Protection positive DTH response, no protection against L.
mexicana Mexicana
Protein Q BCG Dogs VL/L. infantum Protection 90% protection, positive DTH response, 208
: . . 99% reduction in liver and splenic 204
Protein Q CpG ODN BALB/c VL/L. infantum Protection parasite burden, high 1gG2a/IgG1 ratio,
high IFN-y with low IL-4 production
. . Protection only in rTSA-1L12 vaccinees, induce 205
ITSA IL-12 BALB/c CL/L. major Protection human PBMC proliferation.
TSA LmSTIL The protection conferred in all three vaccinees group
TSA+ Lm STIL IL-12 BALBI/c CL/L. major Protection when adjuvant is used, significant protection by 206
m LmSTI1 + IL-12 and TSA + LmSTI1 + IL-12, partial
by TSA +IL-12
TSA+LmMSTI1 rhlL-12 + alum Monkeys CL/L. major Protection No lesion development even on rechallenge after 4 206
months of first challenge.
E lation i . . . .
rLMSTI1 nﬁ?gggoﬁfsn n BALB/c CL/L. major Protection High IgG level and 1gG2a/lgG1 ratio 20
Encapsulation of - . : : - 208
rLMSTI1 antigen with BALB/c CL/L. major Protection High 1gG titer and 1gG2a/1gG1 ratio
CpG-ODN
rLeish-111f MPL-SE BALB/c CL/L. major Protection Enhanced IFN-y and IgG2a production, low IL-4 level 2%
. MPL-SE . . Enhanced IFN-y production, no detectable 109
rLeish-111f rmiL-12 BALB/c CL/L. major Protection IL-4, mixed 1gG1, and IgG2a response
Iran. Biomed. J. 26 (1): 1-35 17
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Adjuvant/delivery

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
91.7% and 99.6% splenic parasite reduction in mice
rLeish-111f MPL-SE BQ".B/ ¢ E 573"/ 6 VL/L. infantum Protection and hamster respectively, enhanced IFN-y, IL-2, TNF 210
yrian hamster production with low IL-4 level in mice
TSA+LmMSTIL1 + . 83% of patients showed complete clinical
LelF+Lbhsp83 GM-CSF Human MCL Protection cure (CC) after nine months, all were 211
CC after a five-year follow-up
ITSArLelF I . Enhanced IFN-y production in response to TSA or 212
rLbSTIL rLACK CpG ODN BALB/c CL/L. braziliensis No Protection LelF or LACK stimulation, high IgG1/IgG2a ratio
ITSA+rLelF+ Lo . Induce Th1 response, specific IgG response to
rLmsSTI1 MPL-SE AdjuPrime Dogs VL/L.chagasi - all three antigens, high 19G2a/lgG1 ratio 213
when MPL-SE is used as compared to AdjuPrime
S . . 87% cumulative incidence in vaccines even after two 103
rMML MPL-SE AdjuPrime Dogs VL/L. infantum No protection years of vaccination
83.3% and 66.6% survival rate by
rLeish-110f+ ] ] immunochemotherapy and chemotherapy respectively, 197
MPL-SE Dogs VLI/L. chagasi protection high proliferative response, high antibody titer in

Glucantime

immunotherapy as compared to immunochemotherapy
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Third-generation vaccines
DNA vaccines

These vaccines contain plasmid DNA, which, after
injection, encodes foreign proteins, leading to the
synthesis of endogenous proteins and the production of
specific immune responses®!. DNA vaccines promote
both cellular and humoral immunity®®! DNA
vaccines can come in many forms, including
recombinant proteins®® ", single vaccinest® %%
1091 “or multigene forms®*®>1% These vaccines were
tested in mice against CL and \/L[848586:91,9495.99.101] ‘)
hamsters against VL%l and dogs against VL%
1971 'DNA vaccines are made up of heterologous DNA
(usually a plasmid) that produces antigenic proteins.
These DNAs are supplied by vectors that allow them to
be expressed in eukaryotic cells®®!. Advantages of
DNA vaccines include (1) fast, simple, and cheap
large-scale production, (2) no need for low
temperature, transportation, and storage, and (3) the
ability to provide long-term protection against multiple
strains of Leishmania. The main concern with these
vaccines is the risk of parasite DNA entering the
mammalian genome. This problem carries the potential
risk of cancer and autoimmune diseases®. A summary
of DNA vaccines is given in Table 6 and the best
recombinant salivary candidates is shown in Table 7.

Vaccine products for potential licensing

There are no licensed products yet, but potential
candidates could be as follows™®: (1) a mixture of
recombinant proteins (Leish F1, Leish F2, and Leish
F3), designed by Infectious Disease Research Institute
(Seattle, USA), is currently in the second phase of a
clinical trial; (2) recombinant proteins from
Leishmania and sandfly saliva (phlebotomus) antigens,
designed by Sabin product development partnership
(Washington, USA)"¥ is now in the preclinical phase.
FML-QuIlA (Leishmune®), a protein vaccine, was the
first approved vaccine in Brazil in 2003. However, the
license to produce and sell the vaccine was suspended
in 2014, and its production was stopped by factories.
The reason for discontinuation was the incompleteness
of the third phase of the trial. There are presently two
vaccines against canine VL: A2 Leishmanial Ag from
Brazil and Li ESP/QA-21 from France™.

DISCUSSION

Vaccines are undoubtedly the most effective way to
control diseases. For this reason, the development of
safe and cost-effective vaccines, particularly for the
diseases with no available vaccine (e.g. leishmaniasis)
is an important global public health priority. A major

Iran. Biomed. J. 26 (1): 1-35

barrier to the development of an effective vaccine is
related to the discrepancies between the animal models
and human diseases, as well as the transition of the
research from the laboratory to the field. Additionally,
many questions related to the immune responses and
maintenance of immunological memory during an
active Leishmania infection have not yet been
extensively studied or answered. This article tried to
focuse on the latest information related to
antileishmanial vaccine development and also major
problems  with  vaccine  development  and
implementation. Candidates for the Leishmania
vaccines include leishmanization, as well as the first-,
second-, and third-generation vaccines. The
development of an effective Leishmania vaccine poses
many challenges, mainly related to the complexity of
the immune responses to Leishmania, insufficient
knowledge of Leishmania pathogenesis, and the
discrepancy between the Old and New World parasites.
It appears that a successful vaccine will most likely be
composed of several antigens rather than a single one,
which suggests that combination vaccines and well-
developed adjuvants, such as Leish-111f and MPL-SE,
have the best chances of success. Further clinical trials
provide more information on the success of these
combination vaccines. In addition, the poor efficacy of
the  killed and subunit  vaccines  makes
the use of live-attenuated vaccines the next best
alternative*®!. Many questions about
antileishmanial immunity in humans have not yet
been answered. It is not clear whether parasite
persistence is required to maintain immunity in
humans. Although parasite persistence in humans is
unknown, it is worth noting that an experimental
mouse model has revealed the persistence of the
parasite following infection™®. A study has been
shown that the absence of parasites leads to the loss of
immunity, implying that continuous antigen presence is
needed for complete protectiont®?.

In contrast, another study in a mouse model has
revealed that the maintenance of memory T-cells is
independent of parasite persistence, and therefore
vaccination with non-persistent strains and non-
persistent, attenuated strains such as LdCEN” or
APMM results in long-term protection®. In general,
due to the complex nature of the immune response to
Leishmania, it is crucial to better understand the
determinants of T-cell for long-term immunity and the
immunity factors affecting antileishmanial immunity
before the development of an effective vaccine. Our
understanding of the determinants of T cells is required
for long-term protective immunity, although there are
still many unknowns. It is hoped that new strategies
will be developed to produce effective T-cell vaccines.
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Table 6. Third-generation vaccines against Leishmania

Adjuvant/delivery

system

Targeted disease

Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
gp63 pCMV BALB/c CL/L. major Protection Enhanced IL-12 and IFN-y %, 214
production, no detectable IL-4
pCMV3ISS or . Partial protection 30% of mice protected, enhanced 94,215
9p63 pcDNA3 BALB/c CL/L. major IFN-y protection but not IL-4
Partial protecti 100-fold parasite and 30% reduction in
gp63 or gp46 VR1012 BALB/c CL/L. mexicana artiat protection lesion size, mixed 1gG2a and IgG1 response, 216217
high 19gG2a/lgG1 in gp46 vaccinee
gp63 + gp46 + . . 80% and 1,000-fold reduction in lesion 216,217
CPb VR1012 BALB/c CL/L. mexicana Protection size and parasite burden respectively
78-80% and 58-60% reduction in liver and
ORFF pcDNA3.1 BALB/c VL/L. donovani Protection spleen parasites respectively, enhanced IFN-y %
expression but no change in IL-4 expression
. . Enhanced IFN-y production as compared to 218,219
PSA-2 pCl-neo C3H/He CL/L. major Protection control, no detectable IL-4 and IL-5, high
1gG2a/1gG1 ratio
A2 pcDNA3 BALB/c CL/VLL. Protection Protection against both species enhanced 220
amazonensis/L. chagasi IFN-y with low IL-4 and I1L-10 production
LACK pCl-neo BALB/c VLI/L. chagasi Protection Increased IFN-y and IL-4 production 21
with low IL-10 and TNF-a level
LACK pCl-neo BALB/c VLI/L. chagasi No protection Increased IFN-y and IL-10 222
production with no IL-4
LACK Cl-neo BALB/c VLI/L. chagasi No protection Enhanced IFN-y with no IL-4 production 2238
p g p Y p
LACK pCMV3ISS BALB/c CL/L. major Partial to complete Partial protection by LACK vaccine o
protection while complete in LACKp24 vaccinees
LACK MIDGE’\(I)I[é\/IIDGE- BALB/C CLIL. major Protection Enhanced IFN-y production 924

with no IL-4, high 1gG2a/lgG1 ratio
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Antigen

Adjuvant/delivery

system

Targeted disease

Result

Other outcomes

Ref.

system Animal model (Leishmania spp.)
CPaor CPb . . Protection only in CPa + CPb vaccines 02
CPa + CPb pCB6 BALB/c CL/L. major Protection increased IFN-y level, but no IL-5
. - . 100-fold parasite and 50% 216,217
CPb VR1012 BALB/c CL/L. mexicana Partial protection reduction in lesion size
Inducemixed Th1/Th2 response, enhanced IFN-
KMP-11 pCMV-LIC Hamster VL/L. donovani Protection ¥, TNF-a, IL-12, iNOS expression including IL- 225
4, low IL-10 level, high 1gG2a, and IgG1 titer
96.7% and 98.7% reduction in splenic and liver
KMP-11 pCMV-LIC BALB/c VL/L. donovani Protection parasite respectively, enhanced IFN-y and IL-4 226
production, suppressed IL-10 level
. . 93% reduction in lesion size, enhanced IFN-y 26
KMP-11 pCMV-LIC+IL-12 BALBI/c CL/L. major Protection with suppressed IL-4 and IL-10 production
Complete protection with enhanced IFN-y and
P4 pcDNA3+IL-12 or BALB/c CL/L. amazonensis Partial to complete TNF-a, low IL-10 production in P4 + 1L-12 101
HSP70 protection vaccines while partial with mixed IFN-y and IL-
10 response in P4 + HSP70 vaccines
91% liver parasite reduction, increased IFN-y
NH36 VR1012 BALB/c VL/L. chagasi Protection with reduced IL-10 and IL-4 levels, positive 22
DTH response, high IgG2b titer
Parasite circulation reduced by 50%,
papLe22 pcDNA3.1 Hamster VLI/L. infantum Partial protection produce high anti-pepLe22 but o
low anti-Leishmania antibody titer
NH VR1012 BALB/ CLVLL. No protecti Enhanced IFN-y, IL-4, and 1L-10 producti 228
c amazonensis/L. chagasi 0 protection nhance -y, IL-4, and 1L-10 production
88% and 65% reduction in L. chagasi parasite
) ) burden and L. mexicana infected lesion size %
NH36 VR1012 BALB/c CL/VL L. chagasi/L. Protection

mexicana

respectively, 2-5 fold increase in IFN-y
producing CD4" T cells, low antibody response,
positive DTH response to L. donovani

Iran. Biomed. J. 26 (1): 1-35
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. Adjuvant/delivery system Targeted disease
Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
P"Siz pCMV3ISS BALB/c CL/L. major No protection ~ eeeeeeeee o
TSA . . Protection induced by all three vaccines 03
LmSTIL PCDNAS3 BALB/c CL/L. major Protection enhanced IFN-a production with no
TSA+LmSTI IL-4, high 1gG2a titer
H2A+H2B+ pcDNA3 BALB/c CL/L. major Protection Enhanced IFN-y with little IL-4 production, %
H3+H4 low antibody response dominated by 1gG2a
KMPII+TRYP+ pMOK Dogs VL/L. infantum No protection Increased anti-Leishmania IgG, IgA, and IgM o
LACK+gp63
DNA3 - 1,000 fold and 70% decrease in parasite burden
LACK-PB pc Vir-uvsaccmla BALB/c CL/L. major Protection and lesion size respectively, increased IFN-y 229

level with low IL-10 and IL-4 levels

Heterologous prime-boost vaccine

[ DOI: 10.52547/ibj.26.1.35 ]

LACK-PB pCl-neo—vaccinia D VLI/L. Protecti 60% of dogs protected, enhanced IFN-y and IL-4 106
virus 0gs infantum rotection expression, high 19G2a/lgG1 ratio
pcDNA3.1 + IL-12 CLI/L. . . . . 230
LACK-PB DNA or IL-18 DNA— BALB/c major Protection Enhanced IFN-y production, high 1gG2a/lgG1 ratio
vaccinia virus
CLJ/L. . 65-92% reduction in lesion size, 231
LACK-PB pCl-neo—MVA BALB/c major Protection increased IFN-y and TNF-q levels
VLIL 144-244, 6-9, and 9-30 fold parasite reduction
LACK-PB MVA BALB/c infantu.m Protection in the lymph node, spleen, and liver respectively, 232
increased IFN-y and TNF-a levels
pcDNA3—Salmonella CLIL
LACK-PB enterica serovar BALB/c maior Protection Increased IFN-y level with low IL-10, high 1gG2a titer 2
Typhimurium J
22 Iran. Biomed. J. 26 (1): 1-35
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. Adjuvant/delivery system Targeted disease
Antigen system Animal model (Leishmania spp.) Result Other outcomes Ref.
VL/L. - Increased IFN-y expression with low IL-10 220
LACK-PB pCl-neo—MVA Dogs infantum Protection and IL-4 transcripts, high IgG2 titer
pCB6 + CpG ODN + VL/L. . High IFN-y/IL-10 ratio, increased IgG, 1gG2 107
CPa+CPb-PB Montanide 720 Dogs infantum Protection but not IgG1 titer, positive DTH response
pCB6 + CpG ODN + VL/L. . Increased IFN-y, high IFN-y/IL-5 ratio, 234
CPa+CPb-PB Montanide 720 BALB/c infantum Protection high 1gG and 1gG2a titer, low IgG1
CTE of CPb-PB CpG ODN + BALB/c VLIL. No protection Increased IL-5 level, high IL-5/IFN-y 2%
Montanide 720 infantum ratio, high 19G2a/lgG1 ratio
CPc-PB pcDNA3.1 + DHFR + BALB/c VLIL. Protection Enhanced IFN-y and NO production, high IgG2a/IgG1 ratio 2%
CpG ODN+ Montanide infantum
720
LiPO-PB pcDNA3 BALB/c CL/L. Protection 84.8-99.1% parasite reduction, enhanced IFN-y =1
major production, mixed 1gG2a/lgG1 response

Table 7. The best recombinant salivary candidates as antigens for detection of anti-saliva antibodies

Recombinant Protein . Host
protein family Sandfly species species Reference
LIM17 YRP Lu. longipalpis dog, fox, human 238239
LIM11 YRP Lu. longipalpis human, dog, chicken 238,240
LIM17+LIM11 YRP Lu. longipalpis human 28
rPpSP32 SP32-like Phlebotomus papatasi human 241243
rPorSP24 YRP P. orientalis sheep, goat, dog 244
rSP03B YRP P. perniciosus mouse, dog, hare, rabbit 245-248
rSPO1 apyrase P. perniciosus mouse, dog 25
rSPO1B apyrase P. perniciosus mouse, dog, hare, rabbit 245,246,249

Lu. Longipalpis, Lutzomyia longipalpis

Iran. Biomed. J. 26 (1): 1-35
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The most important thing to consider before making a
Leishmania vaccine is to determine the best immunity
correlations, as well as to develop efficient delivery
systems and improved adjuvants. According to
advanced research in parasite immunology and genetic
engineering, an effective anti-Leishmania vaccine not
far away. In this study, data extraction was performed
by two researchers, which may result in errors.
Searching for English language and scientific articles
in other languages, which may have valuable
information from Africa, the Middle East, and Asia,
were limited. Despite these limitations, the present
study attempted to review the content of credible
articles that lead to clear and up-to-date information on
the performance and effectiveness of various vaccines
designed against leishmaniasis.

Given the global importance of leishmaniasis,
decisive measures must be taken to prevent this disease
with social impacts. It seems that one of the effective
ways to control leishmaniasis is immunization of
people living in endemic areas of the disease. In this
review, it was found that an effective vaccine against
leishmaniasis is not yet available, and scientists in this
field have chosen different methods to produce such a
vaccine. The results of these efforts have been the
production of three different generations of Leishmania
vaccines. In any case, summarizing the results of these
studies and trying to clarify as much as possible the
ambiguities in the immunity of leishmaniasis and
especially the interaction of the parasite with host cells
will help to advance in the right direction.
Understanding more about the unknown mechanisms
of the behavior of the parasites inside the host body
will persuade us to produce an effective vaccine
against the disease.
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