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ABSTRACT 
 

Background: A mouse model of LPS-induced inflammation was used to investigate the effect of pharmacological 
inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity 
of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte 
developmental competence was assessed. Methods: Mice were treated with the PARP-1 inhibitor, 4-HQN, one 
hour before LPS administration. After 24 h, oocyte in vitro maturation was detected. Granulosa cell DNA damage 
was determined by the alkaline comet assay. Live, necrotic and apoptotic cells were identified using double vital 
staining by fluorescent dyes, Hoechst 33342 and propidium iodide. The expression levels of cumulus genes were 
assessed using reverse transcriptase PCR. Results: The administration of 4-HQN to LPS-treated mice ameliorated 
oocyte meiotic maturation and exerted a significant cytoprotective effect. 4-HQN attenuated LPS-induced DNA 
damage and favored cell survival by decreasing necrosis and apoptosis in granulosa cells. Exposure to 4-HQN 
increased mRNA expression levels for HAS2, COX2, and GREM1 in cumulus cells. Conclusion: The obtained results 
indicate the involvement of PARP-1 in the pathogenesis of ovarian dysfunction caused by LPS. We suppose that 
this enzyme can be an attractive target for the therapy of inflammatory disorders in ovary. The protective action 
of PARP-1 inhibition could at least partly be associated with the reduction of necrotic death of follicular cells and 
also in other cells. However, the detailed mechanisms of the favorable effect of PARP inhibitors on endotoxin-
induced ovarian disorders need to be further explored. DOI: 10.52547/ibj.26.1.44 
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INTRODUCTION 

 

female genital tract infection with Gram-

negative bacteria can disturb normal ovarian 

function and result in infertility
[1-3]

. The 

lipopolysaccharide endotoxin is an important surface 

membrane component in these bacteria. It has been 

shown that LPS can induce ovarian pathology by 

affecting the functions of follicular cells and oocyte 

developmental competence. Mice treated with the 

endotoxin had decreased a number of primordial 

follicles. Also, LPS inhibited estradiol production in 
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granulosa cells and progesterone production in theca 

cells, representing an endocrine-disrupting effect
[1,4,5]

. 

This endotoxin disrupted meiotic progression, 

mitochondrial distribution in the cytoplasm, and 

mitochondrial membrane potential, which caused the 

disruption of nuclear maturation of bovine oocytes
[6]

. 

Furthermore, LPS exposure exhibited increased 

reactive oxygen species levels, enhanced apoptotic 

gene expression, and changed epigenetic status in 

bovine oocytes
[7]

. It is important to note that the LPS 

level in the follicular fluid, which surrounds and 

nourishes oocytes, is close to those in circulating 

blood. Therefore, it is obvious that systemic 

endotoxemia can be related to ovarian 

inflammation
[1,8]

.  

PARP-1 is a nuclear enzyme essential for various 

cellular functions, including DNA damage detection 

and repair, transcriptional regulation, and cell death. It 

belongs to a family of 18 enzymes that utilize NAD
+
 as 

a substrate to form large negatively charged polymers 

of poly (ADP-ribose) and attach them to acceptor 

proteins, thereby modifying their function. PARP-1 is 

activated upon binding to DNA strand break and 

initiates the repair of damaged DNA and preservation 

of genomic integrity
[9,10]

. Therefore, optimal 

expression and activity of this enzyme are necessary 

for a variety of cellular processes (e.g. transcriptional 

regulation, chromatin modification, cell proliferation, 

and death); however, overactivation of PARP-1 can 

contribute to tissue damage and inflammatory 

disorders. It has been shown that proinflammatory 

cytokines (TNF-α and IL-1), free radicals, and bacterial 

products (such as LPS) can activate PARP-1
[10,11]

. This 

enzyme participates in the pathogenesis of various 

immune-mediated diseases, comprising rheumatoid 

arthritis, autoimmune nephritis, and atherosclerosis, 

mainly through the activation of proinflammatory 

transcription factors (nuclear factor kappa B and  

activating protein-1) and the increase in a necrotic type 

of cell death
[12,13]

. It has been displayed that in PARP-1 

knockout mice that inflammation and tissue damage 

reduced under various pathological conditions, 

inhibitors of the enzyme have been reported to have 

similar beneficial properties
[9,14,15]

. It is expected that 

the inhibitors of PARP-1 can be a promising tool for 

therapeutic intervention
[16-19]

. It also can be assumed 

that the inhibition of this nuclear enzyme could have a 

protective effect on the disorders of the female 

reproductive system associated with endotoxemia. In 

this respect, the effect of PARP-1 inhibitor, 4-HQN
[19]

, 

on oocyte meiotic maturation, apoptotic and necrotic 

death, and also DNA integrity of granulosa cells in 

mice with LPS-induced endotoxemia was studied. 

Changes in the expression of genes, i.e. HAS2, COX2, 

and GREM1, which may serve as markers of oocyte 

quality, were also investigated in similar conditions.  
 

 

MATERIALS AND METHODS 
 

Animals  
The study was conducted with adult female Albino 

mice (18-20 g; 6-8 weeks of age; Experimental 

Biological Clinic of Bogomoletz Institute of 

Physiology, Ukraine). The mice were placed into the 

cages (four per cage), and each was individually 

ventilated with 12-hour light/dark cycle, maintained at 

22 ± 2 ºC. All the mice were provided with certified 

rodent diet and filtered water ad libitum. 
 

Experimental design  
The estrous cycle stages were identified by vaginal 

smears. Female mice in both metestrus and diestrus 

phases were randomly divided into four groups (eight 

mice per control and experimental group): (1) mice 

treated i.p. with vehicle-saline (control group); (2) 

mice treated i.p. with 3 mg/kg of LPS (E. coli 0111:B4, 

Sigma-Aldrich, St. Louis, MO, USA); (3) mice 

received an injection of 4-HQN (100 mg/kg; i.p.; 

Sigma-Aldrich); (4) mice treated with 4-HQN, 1 h 

before LPS challenge. Twenty four hours after LPS 

administration, ether anesthesia was used for 

euthanizing mice, and then murine ovaries were 

sampled.  
 

Determination of oocyte meiotic maturation  

The large antral follicles with four or more layers of 

granulosa cells were isolated from ovaries using light 

microscopy. Cumulus oocyte complexes were 

separated mechanically and cultured in DMEM 

(Sigma-Aldrich) at 37 °C, supplemented with 5% fetal 

bovine serum and the antibiotics penicillin (100 U/ml) 

and streptomycin (100 µg/ml) (Sigma-Aldrich). The 

number of oocytes at metaphase I stage (with germinal 

vesicle breakdown) was calculated by light microscopy 

after 4 h of cultivation; the number of metaphase II 

oocytes (with the first polar body) was counted after 20 

h of cultivation. The oocyte maturation rate was 

calculated by using the ratio of total metaphase I 

oocytes and metaphase II oocytes to the total oocyte 

number in the group.  
 

Determination of the cell death 

Freshly isolated cells were used for quantitative 

evaluation of viability and death. Follicular (granulosa) 

cells were obtained after oocyte removal from cumulus 

oocyte complexes and dispersion by careful pipetting. 
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To define the percentage of live, necrotic and apoptotic 

cells, we stained the cells with fluorescent dyes, 

propidium iodide, and Hoechst 33342
[20]

. Because 

propidium iodide penetrates the damaged plasma 

membranes and stains the cell nuclei in red, only 

necrotic cells emit red fluorescence. Hoechst 33342 

enters live cells with intact membranes, staining their 

nuclei in blue.  The binding of these dyes to chromatin 

allows identifying the nuclear apoptotic features, such 

as chromatin condensation, DNA fragmentation, and 

apoptotic body formation. Staining was performed in 

PBS with a final concentration of 10 μmol/l for each 

dye. The cells were then kept in darkness for 10 

minutes and subsequently washed with PBS by 

centrifugation. In the next step, cells were fixed in 5% 

formalin in PBS for two minutes, followed by repeated 

washing. Smears were prepared and studied under a 

fluorescent microscope (×700). In each sample, at least 

100 cells were counted, and the percentage of live, 

necrotic and apoptotic cells was determined.  
 

Сomet assay 
To assess DNA damage in granulosa cells, the 

alkaline comet assay procedure was performed as 

described earlier
[2]

. Briefly, the alkaline single cell gel 

electrophoresis assay detected DNA strand breaks, 

alkali labile sites, and incomplete excision repair sites. 

The comets were detected and scored by visual 

inspection according to Collins
[21]

, and the TCS was 

evaluated. 
 

Determination of gene expression 

Total RNA extraction from cumulus cells was 

performed using Trizol RNA Prep 100 kit (Isogen, 

Russian) according to the manufacturer’s instruction. 

Reverse transcription was carried out using the First 

Strand cDNA Synthesis Kit (Fermentas, Lithuania) as 

described in the manufacturer’s protocol. Total RNA 

samples (5 μl) were used as templates. After thawing, 

all components were mixed by brief vortexing and then 

placed on ice. In the next step, RNA template (5 μl), 

Random Hexamer primer (1 μl; 0.5 μg/μl), and 

nuclease-free water (6 μl; to reach the final volume of 

12 μl) were added to a sterile, nuclease free thin-walled 

microcentrifuge tube (0.2 ml), prechilled on ice. The 

reaction mixtures were prepared for both the positive 

and negative controls without the template. 

The contents were gently vortexed and incubated at  

70 °С for 5 minutes. After incubating, the contents of 

tubes were placed on ice. Afterward, 5× RT Buffer (4.0 

μl), 2 μl of dNTP mix (10 mM each), 0.5 μl of 

RiboLock RNAse inhibitor (40 U), 1.5 μl of M-MuLV 

Reverse Trascriptase (20 U/μl) were added to make a 

total volume of 20 μl; all reagents were purchased from 

Fermentas). The contents of tubes were gently 

vortexed. Then reverse transcription of RNA into 

cDNA was performed by incubating at 37 °С for 120 

minutes. The final stage of the reaction process was 

heating at 70 °С for 10 minutes. Contents were placed 

on ice. Next, single strand cDNA obtained was used 

for PCR (Applied Biosystems 2700, PerkinElmer, 

USA), which performed using specific primers for each 

gene. GAPDH was applied as a housekeeping gene for 

normalizing PCR results. The list of PCR primers are 

presented in Table 1. PCR products were separated 

using agarose gel electrophoresis and visualized using 

a UV-transilluminator (Biokom, Russian). The  

fluorescence intensiveness was assessed by ViTran 

program (version 1.00 for Windows, Biokom, 

Russian). 

 

Statistical analysis 

The GraphPad Prism software version 5.00 for 

Windows (San Diego, California, USA) was used for 

statistical analyses. The normality of the data 

distribution was analyzed by Kolmogorov-Smirnov 

test. In the case of normal data distribution, one-way 

ANOVA with Newman Keuls post hoc test was 

applied. The results were expressed as mean ± SEM. 

Kruskal-Wallis test and Dunn's multiple-comparison 

test were applied for data with non-normal distribution.  

p values less than 0.05 were considered statistically 

significant.  

 
 

                                   Table 1. List of PCR primers used for experiments and PCR product size 
 

Gene Sequence of primers  Product size (bp) 

HAS2 
F: 5'-CCTCCAGTTAGTGTCTGGGTTC-3' 

R: 5'-CTGTGCAGCTATTCCTGTGTTC-3' 

409 

   

COX2 
F: 5'-GAAGGAACTCAGCACTGCATC-3' 

R: 5'-CAGTCCGGGTACAGTCACACT-3' 

213 

   

GREM1 
F: 5'-AAGGCACTTCCTGTTACTCTGC-3' 

 R: 5'-TACGACTGAGATGTCAGGGAGA-3' 

256 

   

GAPDH 
F: 5'-GGGTGTGAACCACGAGAAATATGA-3’ 

R: 5'-AGCACCAGTGGATGCAGGGATGAT-3’ 

240 

                                 F, forward; R, reverse 
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Ethical statement  
The above-mentioned treatment and sampling 

protocols were approved by the Biomedical Ethics 

Committee of Bogomoletz Institute of Physiology 

(Kyiv, Ukraine) and performed in accordance with the 

rules established by the Law of Ukraine No. 3447-IV 

"On protection of animals from cruelty", as well as the 

guidelines established by the EU Directive 2010/63/EU 

for animal experiments.  

 

 

RESULTS 

 

Effect of PARP-1 inhibition on oocyte meiotic 

maturation in mice with endotoxemia 

Our data indicated that under the condition of LPS-

induced impairment of ovarian function, PARP-1 

inhibition significantly increased the number of 

oocytes reaching metaphase I (with germinal vesicle 

breakdown) and II (with extruded the first polar body) 

compared to LPS group, indicating an improvement in 

their developmental competence (Fig. 1). Of note, 4-

HQN treatment alone did not have an impact on oocyte 

meiotic maturation of intact mice (p > 0.05).  

 

Effect of PARP-1 inhibition on gene expression in 

cumulus cells of mice with endotoxemia 
The pretreatment with 4-HQN enhanced the 

expression of mRNA for all studied genes in cumulus 

cells obtained from mice with LPS-induced 

endotoxemia. The levels of HAS2 mRNA expression 

increased by 20%, COX2 by 28%, and GREM1 by 29% 

(p < 0.05 for all) compared to LPS group. Expression 

levels of HAS2, COX2, and GREM1 mRNA were 

detected in all of the samples (Fig. 2A). The relative 

expression profile of the genes is presented in Figure 

2B.  

Effect of PARP-1 inhibition on overall genome 

integrity in granulosa cells of mice with 

endotoxemia 

Endotoxemia caused a 1.9-fold elevation of TCS 

values (a cumulative index that considers the changes 

in the number of comets of each type with varying 

degree of DNA damage) in ovarian granulosa cells 

(from 156 ± 33 in control to 295 ± 9 in LPS group, p < 

0.001). Also, LPS treatment led to a 2.3-fold increase 

(compared to the control) in the number of granulosa 

cells with severe DNA damage. The administration of 

PARP-1 inhibitor decreased TCS by 1.8-fold (from 

295 ± 9 in LPS group to 167 ± 21 in 4-HQN + LPS 

group; p < 0.01) and reduced the number of granulosa 

cells with severe DNA damage nearly to the control 

levels (Fig. 3). 4-HQN, used alone, had no 

significant effect on the overall genome integrity in 

granulosa cells of intact mice (p > 0.05). The comet 

assay also indicated that PARP inhibition significantly 

attenuated endotoxin-induced genotoxicity in ovarian 

granulosa cells. 

 

Effect of PARP-1 inhibition on granulosa cell 

viability in mice with endotoxemia 

It is known that a severe DNA injury can lead to 

different types of cell death, including 

proinflammatory necrotic death that can enhance 

inflammation and ovarian injury. In this study, LPS 

caused a pronounced decline in granulosa cell viability 

and an increase in the number of necrotic and apoptotic 

cells (p < 0.001; compared to control; Fig. 4A). 

Representative image of live, apoptotic and necrotic 

cell nuclei is presented in Figure 4B. The pretreatment 

with 4-HQN favored cell survival by increasing the 

amount of viable cells (p < 0.001 compared to LPS 

group)  and   decreasing   the   percentage   of  necrotic  

 
 

 

 
 

Fig. 1. Effect of 4-HQN on the percentage of oocytes with germinal vesicle breakdown (metaphase I) and oocytes forming the first 

polar body (metaphase II) in mice treated with LPS. Control mice received saline. Results are expressed as mean ± SEM. *p < 0.05 and 
**p < 0.01 compared to saline controls; ##p < 0.01 compared to LPS-treatment 
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Fig. 2. Effect of 4-HQN administration on HAS2, COX2, and GREM1 gene expression in cumulus cells of mice treated with LPS. 

(A) Agarose gel electrophoresis of PCR products generated by specific primers for HAS2, COX2, and GREM1. (B) Relative expression 

ratio (bar graph) of HAS2, COX2, and GREM1 normalized to GAPDH gene control. Data are represented as mean ± SEM. **p < 0.01 

compared to saline controls; #p < 0.05 compared to LPS-treatment 

 

 

(p < 0.01) and apoptotic (p < 0.05) granulosa cells (Fig. 

4A). 4-HQN alone did not have any effect on granulosa 

cell viability of intact mice (p > 0.05). 

 

 

DISCUSSION 

 

LPS is widely used to establish mammalian models 

of immune-mediated inflammation. Earlier, we have 

demonstrated that intraperitoneal administration of 

LPS caused systemic inflammation in female mice. We 

also observed ovarian dysfunction, impaired oocyte 

meiotic maturation, strong genotoxic stress of ovarian 

follicular cells, elevated level of DNA damage in 

granulosa cells, and the changes in the mRNA level of 

certain cumulus genes, which are associated with 

oocyte developmental competence
[2]

. In the present 

study, we found that LPS exposure significantly 

decreased the viability of granulosa cells and increased 

the number of cells dying through the pro-

inflammatory and immunogenic necrotic pathway. 

During systemic inflammation, it has been suggested  

 

that cumulus cells can initiate an inflammatory 

response to endotoxin because these cells express 

TLR4
[22]

. The mechanisms by which LPS negatively 

affect ovarian function are not yet completely 

understood.  

PARP-1 has been demonstrated to be involved in the 

regulation and maintenance of tissue 

inflammation
[11,23,24]

. Moreover, LPS increased the 

levels of PARP-1 mRNA
[25]

. As reported before, LPS 

was able to increase PARP-1 expression and activation 

by inducing DNA damage
[26]

. In our work, we showed 

that the administration of 4-HQN to LPS-treated mice 

had anti-inflammatory and cytoprotective effects. 

Therefore, the reduction of genotoxic stress and 

necrotic death of thymus and lymph node cells, as well 

as the significant decrease in functional and metabolic 

activity of neutrophils were revealed under these 

conditions
[27]

. Although the use of PARP-1 inhibitors 

can have the efficacy for the treatment of an 

inflammatory-induced tissue injury
[14,18,28,29]

, the 

inhibitory effects of this enzyme on LPS-induced 

ovarian dysfunction remain unclear.   
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Fig. 3. Effect of 4-HQN on the percentage of granulosa cells 

with undamaged and slightly damaged DNA (comets within 

classes 0 and 1) and cells with severe DNA damage (comets 

within classes 3 and 4) in mice treated with LPS. Control mice 

received saline. Results are expressed as mean ± SEM. **p < 

0.01 compared to saline controls; ##p < 0.01 compared to LPS-

treatment 

 

 

During the present study, the effect of PARP-1 

inhibitor 4-HQN on the changes of ovarian function in 

mice with endotoxemia was examined. It was 

established that 4-HQN treatment resulted in an 

improved morphofunctional status of granulosa  

cells and an ameliorated oocyte meiotic maturation. 

During the folliculogenesis, several cumulus expressed  

genes are crucial for oocyte maturation and 

development[30-32]. We investigated the expression of 

three cumulus genes, HAS2, COX2 (or PTGS2), and 

GREM1, which were previously reported in many 

papers and correlated with the high quality oocyte 

development[31,33-35]. Endotoxemia led to a significant 

decrease in the level of mRNA expression of HAS2, 

COX2 and GREM1 genes in cumulus cells[2]. However, 

4-HQN administration to LPS-injected mice 

significantly increased the expression of these genes in 

cumulus cells surrounding oocytes. The obtained 

results indicated that the different expression pattern of 

the target genes can be applied as potential biological 

markers for the developmental competence of oocytes 

in the presence of LPS-induced pathological process. 

HAS2 mRNA is a necessary component required for 

cumulus cell expansion, which is essential for oocyte 

maturation and ovulation process. During cumulus 

expansion, HAS2 gene expression is involved in the 

synthesis of hyaluronic acid, one of the main 

components of the extracellular matrix[36]. COX2 gene 

encodes the corresponding enzyme, which is involved 

in prostaglandin biosynthesis. COX2 produced by 

cumulus cells covers an important role in cumulus 

expansion and meiotic resumption during oocyte 

development[32,37]. The involvement of GREM1 in 

ovarian function is not entirely clear. It is known that 

GREM1 is a BMP antagonist involved in the regulation 

of embryonic development. It has also been suggested 

that the selective inhibition of signaling pathways 

associated with BMP can direct growth differentiation 

factor 9 toward cumulus expansion during 

ovulation[38]. The mRNA expression of GREM1 and 

HAS2 has been found to be significantly lower in 

immature oocytes compared with mature cells[39].   

Other authors have revealed a positive correlation of 

PTGS2 with oocyte nuclear maturation[32]. The 

prominent percentage of studies has reported that the 

expression levels of HAS2, GREM1, and COX2 were 

higher in cumulus cells  separated from oocytes, which 
 

 

 
 

    
 

Fig. 4. Effect of 4-HQN on the percentage of viable, apoptotic 

or necrotic granulosa cells on mice treated with LPS. Control 

mice received saline. (A) The percentage of viable, apoptotic 

and necrotic cells as determined by their vital staining with 

fluorescent dyes, Hoechst 33342 and propidium iodide; (B) 

representative image of cells stained by Hoechst 33342 and 

propidium iodide: 1, viable cells (Hoechst 33342 penetrates non-

injured membranes and stains the nuclei of live cells in blue); 2, 

apoptotic cells (with characteristic nuclear changes: peripheral 

localization of chromatin, chromatin condensation, and nuclear 

fragmentation); 3, necrotic cells (propidium iodide penetrates 

through leaky plasma membranes and stains their nuclei in red). 

Data are represented as mean ± SEM. *p < 0.05 and **p < 0.01 

compared to saline controls; #p < 0.05 and ##p < 0.01 compared 

to LPS-treatment 
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developed into high-quality embryos[31,33-35,39]. 

Therefore, the collecting data from this experiment, 

along with other published results, provides the 

rationale for assessing the expression of studied genes 

as biomarkers of oocyte quality.  

During infections, bacterial LPS is able to enter the 

bloodstream and to spread far from the site of 

infection
[40]

. In this regard, the presence of endotoxin 

has been documented in blood plasma and in follicular 

fluid
[40,41]

. As mentioned above
[22]

, cumulus and 

granulosa cells express TLR4 receptors; therefore, they 

have the potential to initiate an inflammatory response 

to LPS by increasing the expression of 

proinflammatory mediators (e.g. TNFα, IL-1β, IL-6, 

and IL-8)
[22,40,41]

. We hypothesize that LPS-induced 

inflammation in the follicular fluid impacts the 

cumulus-oocyte complex, and exposure to high levels 

of proinflammatory cytokines can have an adverse 

effect on cumulus cell signaling and disrupt the 

expression of studied genes. In particular, it has been 

demonstrated a decrease in the expression of GREM1 

in cumulus cells in women, under the influence of high 

levels of IL-1β and IL-10
[38]

. Therefore, the favorable 

effect of PARP-1 inhibition on endotoxin-induced 

ovarian disorders could be mediated by changes in the 

activation of proinflammatory transcription factors and 

intracellular signaling pathways as has been 

demonstrated in different models of inflammatory 

diseases
[9,19,42]

.  

The data from PARP-1 inhibition studies suggest that 

LPS-induced endotoxemia causes the activation of this 

enzyme, followed by the induction of necrotic cell 

death and organ damage. The cytoplasmic content, 

which is released after cell membrane rupture (in 

necrotic granulosa cells as well as in leukocytes 

infiltrating damaged ovarian tissue) can provoke and 

facilitate inflammation. We speculate that the 

protective action of PARP-1 inhibitor 4-HQN on LPS-

induced ovarian dysfunction could also be related to 

the decrease in necrotic cell death. Also, anti-necrotic 

properties of PARP inhibitors have been shown in 

different animal models, including immune 

inflammatory pathology
[13,19,43]

. It is important that the 

inhibition of PARP-1 contributes to a considerable 

reduction in the number of cells with such severe DNA 

damage that cannot be repaired but leads to necrotic 

cell death.  

In conclusion, PARP-1 inhibition interrupted 

destructive proinflammatory connections, favored 

protection against genotoxic stress and led to the 

prevention and weakening of the pathological process. 

PARP-1 is an attractive target for the therapy of 

inflammatory disorders. However, due to the fact that 

this enzyme is essential for many physiological 

"housekeeping processes", including DNA reparation, 

transcription, cell cycling, mammalian oogenesis, and 

folliculogenesis, caution should be taken to avoid 

possible side effects. Our data, together with other 

published results, provide the ground for further 

studies of the underlying molecular mechanisms of 

cytoprotective and anti-inflammatory effects of PARP 

inhibitors, as well as the therapeutic potential of PARP 

inhibition to prevent or delay immune inflammatory 

diseases, including ovarian dysfunction, caused by 

endotoxemia. 
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