Volume 25, Issue 2 (3-2021)                   IBJ 2021, 25(2): 68-77 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi Baker Z, sardari S. Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis. IBJ 2021; 25 (2) :68-77
URL: http://ibj.pasteur.ac.ir/article-1-3254-en.html
Abstract:  
Characterization and extraction of plant secondary metabolites are important in agriculture, pharmaceutical, and food industry. In this regard, the applied analytical methods are mostly costly and time-consuming; therefore, choosing a suitable approach is essential for optimum results and economic suitability. One of the recently considered methods used to characterize new types of materials is MIPs. Among the various applications of MIPs is the identification and separation of various plant-derived compounds, such as secondary metabolites, chemical residues, and pesticides. The present review describes the application of MIPs as a tool in medicinal plant material analysis, focusing on plant secondary metabolism.
Type of Study: Review Article | Subject: Medical Biotechnology

References
1. Fernando WGD. Plants: An international scientific open access journal to publish all facets of plants, their functions and interactions with the environment and other living organisms. Plants (Basel) 2012; 1(1): 1-5. [DOI:10.3390/plants1010001]
2. Verma S, Singh SP. Current and future status of herbal medicines. Veterinary world 2008; 2:347. [DOI:10.5455/vetworld.2008.347-350]
3. Sneader W. Drug Prototypes and Their Exploitation. Baffins Lane, Chichester, West Sussex, England. John Wiley and Sons Ltd. 1996.
4. Mann, J. Murder, Magic, and Medicine. World of Books Inc (Wilmington, DE, U.S.A. Oxford University Press, 2000.
5. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. Journal of natural products 2016; 79(3): 629-661. [DOI:10.1021/acs.jnatprod.5b01055]
6. Butler MS. The role of natural product chemistry in drug discovery. Journal of natural products (2004); 67(12): 2141-2153. [DOI:10.1021/np040106y]
7. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants' extracts. African journal of traditional, complementary and alternative medicines 2011; 8(1): 1-10. [DOI:10.4314/ajtcam.v8i1.60483]
8. Meier F, Mizaikoff B. Molecularly imprinted polymers as artificial receptors. 2010; DOI: 10.1002/97835276 32480.ch13. [DOI:10.1002/9783527632480.ch13]
9. Piletska EV, Karim K, Cutler M, Piletsky SA. Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents. Journal of separation science 2013; 36(2): 400-406. [DOI:10.1002/jssc.201200520]
10. Haupt K, Mosbach K. Plastic antibodies: developments and applications. Trends in biotechnology 1998; 16(11); 468-475. [DOI:10.1016/S0167-7799(98)01222-0]
11. Kandimalla VB, Ju H. Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Analytical and bioanalytical chemistry 2004; 380(4): 587-605. [DOI:10.1007/s00216-004-2793-9]
12. Ramström O, Ye L Krook M, Mosbach K. Applications of molecularly imprinted materials as selective adsorbents: emphasis on enzymatic equilibrium shifting and library screening. Chromatographia 1998; 47(7-8): 465-469. [DOI:10.1007/BF02466482]
13. Andersson LI. Molecular imprinting for drug bioanalysis: A review on the application of imprinted polymers to solid-phase extraction and binding assay. Journal of chromatography b: biomedical sciences and applications 2000; 739(1): 163-173. [DOI:10.1016/S0378-4347(99)00432-6]
14. Ensing K, de Boer T. Tailor-made materials for tailor-made applications: application of molecular imprints in chemical analysis. TrAC trends in analytical chemistry 1999; 18(3); 138-145. [DOI:10.1016/S0165-9936(98)00103-4]
15. Sellergren B, Lepistoe M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American chemical society 1988; 110(17): 5853-5860. [DOI:10.1021/ja00225a041]
16. Suedee R, Saelim J. Thavornpibulbut T, Srichana T. Chiral determination of various adrenergic drugs by thin-layer chromatography using molecularly imprinted chiral stationary phases prepared with α-agonists. Analyst 1999; 124(7): 1003-1009. [DOI:10.1039/a902257k]
17. Turkewitsch P, Wandelt B, Darling GD, Powell WS. Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Analytical chemistry 1998; 70(13): 2771. [DOI:10.1021/ac981558g]
18. Idziak I, Benrebouh A. A molecularly imprinted polymer for 7α-ethynylestradiol evaluated by immunoassay. Analyst 2000; 125(8): 1415-1417. [DOI:10.1039/b002350g]
19. Andersson LI. Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Analytical chemistry 1996; 68(1):111-117. [DOI:10.1021/ac950668+]
20. Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993; 361(6413): 645-647. [DOI:10.1038/361645a0]
21. Ramström O, Skudar K, Haines J, Patel P, Brüggemann O. Food analyses using molecularly imprinted polymers. Journal of agricultural and food chemistry 2001; 49(5): 2105-2114. [DOI:10.1021/jf001444h]
22. Olsen J, Martin P, Wilson I, Graeme J. Methodology for assessing the properties of molecular imprinted polymers for solid phase extraction. Analyst 1999; 124: 467-471. [DOI:10.1039/a900040b]
23. Mullett WM, Lai EP. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution. Analytical chemistry 1998; 70(17): 3636-3641. [DOI:10.1021/ac980264s]
24. Kriz D, Kriz CB, Andersson LI, Mosbach KH. Thin-layer chromatography based on the molecular imprinting technique. Analytical chemistry 1994; 66(17): 2636-2639. [DOI:10.1021/ac00089a008]
25. Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical chemistry 1994; 66(9): 1578-1582. [DOI:10.1021/ac00081a036]
26. Andersson LI, Paprica A, Arvidsson T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia 1997; 46: 57-62. [DOI:10.1007/BF02490930]
27. Crescenzi C, Bayoudh S, Cormack PA, G Klein, T Ensing K. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry. Analytical chemistry 2001; 73(10): 2171-2177. [DOI:10.1021/ac0014360]
28. Koster EH, Crescenzi C, den Hoedt, W Ensing, de Jong GJ. Fibers coated with molecularly imprinted polymers for solid-phase microextraction. Analytical chemistry 2001; 73(13): 3140-3145. [DOI:10.1021/ac001331x]
29. Zander A, Findlay P, Renner T, Sellergren B, Swietlow A. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction. Analytical chemistry 1998; 70(15): 3304-3314. [DOI:10.1021/ac971272w]
30. Mullett WM, Lai EPC, Sellergren B. Determination of nicotine in tobacco by molecularly imprinted solid phase extraction with differential pulsed elution. Analytical communications 1999; 36(6): 217-220. [DOI:10.1039/a902509j]
31. Muldoon MT, Stanker LH. Molecularly imprinted solid phase extraction of atrazine from beef liver extracts. Analytical chemistry 1997; 69(5): 803-808. [DOI:10.1021/ac9604649]
32. Koeber R, Fleischer C, Lanza F, Boos K, S Sellergren, B Barceló D. Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC−MS analysis of triazines in river water samples using molecularly imprinted polymers. Analytical chemistry 2001; 73(11): 2437-2444. [DOI:10.1021/ac001483s]
33. Bjarnason B, Chimuka L, Ramström O. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Analytical chemistry 1999; 71(11); 2152-2156. [DOI:10.1021/ac9810314]
34. Shariati R, Rezaei B, Jamei HR, Ensafi AA. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta 2019; 194: 143-149. [DOI:10.1016/j.talanta.2018.09.069]
35. Díaz-Álvarez M, Turiel E, Martín-Esteban A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples. Analytica chimica acta 2019; 1045: 117-122. [DOI:10.1016/j.aca.2018.09.001]
36. Aria M, M Sorribes-Soriano A, Jafari MT, Nourbakhsh F, Esteve-Turrillas FA, Armenta S, Herrero-Martínez JM, de la Guardia M. Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction-ion mobility spectrometry. Microchemical journal 2019; 144: 195-202. [DOI:10.1016/j.microc.2018.09.007]
37. Abbasi Ghaeni F, Karimi G, Mohsenzadeh MS, Nazarzadeh M, Motamedshariaty VS, Mohajeri SA. Preparation of dual-template molecularly imprinted nanoparticles for organophosphate pesticides and their application as selective sorbents for water treatment. Separation science and technology 2018; 53(16): 2517-2526. [DOI:10.1080/01496395.2018.1461112]
38. Boulanouar S, Combès A, Mezzache S, Pichon V. Synthesis and application of molecularly imprinted silica for the selective extraction of some polar organophosphorus pesticides from almond oil. Analytica chimica acta 2018; 1018: 35-44. [DOI:10.1016/j.aca.2018.02.069]
39. Arabi M, Ghaedi M, Ostovan A. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. Journal of chromatography B 2017; 1048: 102-110. [DOI:10.1016/j.jchromb.2017.02.016]
40. Chen FF, Wang R, Shi Y P. Molecularly imprinted polymer for the specific solid-phase extraction of kirenol from Siegesbeckia pubescens herbal extract. Talanta 2012; 89: 505-512. [DOI:10.1016/j.talanta.2011.12.080]
41. Ghasemi S, Nematollahzadeh A. Molecularly imprinted ultrafiltration polysulfone membrane with specific nano-cavities for selective separation and enrichment of paclitaxel from plant extract. Reactive and functional polymers 2018; 126: 9-19. [DOI:10.1016/j.reactfunctpolym.2018.02.012]
42. Gomes C, Sadoyan G, Dias R, Costa MRPFN. Development of molecularly imprinted polymers to target polyphenols present in plant extracts. Processes 2017; 5(4): 72. [DOI:10.3390/pr5040072]
43. Henry N, Favetta P, Delépée R, Seigneuret JM, Agrofoglio LA. Synthesis of a molecularly imprinted polymer to isolate glucosamine from plant extracts by an ionic-non‐covalent dual approach. International journal of cosmetic science 2015; 37(2): 196-206. [DOI:10.1111/ics.12182]
44. Machyňáková A, Hroboňová K. Preparation and application of magnetic molecularly imprinted polymers for the selective extraction of coumarins from food and plant samples. Analytical methods 2017; 9: DOI: 10.1039/C7AY00502D . [DOI:10.1039/C7AY00502D]
45. Xie J, Zhu L, Luo H, Zhou L, Li C, Xu X. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. Journal of chromatography A 2001; 934(1-2): 1-11. [DOI:10.1016/S0021-9673(01)01294-8]
46. Xie X, Wei F, Chen L, Wang S. Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts. Journal of separation science 2015; 38(6): 1046-1052. [DOI:10.1002/jssc.201401142]
47. Saad E, Madbouly A, Ayoub N, El Nashar RM. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Analytica chimica acta, 2015; 877: 80-89. [DOI:10.1016/j.aca.2015.03.047]
48. Sun X, Zhang C, Huang YP, Liu ZS. Separation of epigallocatechin gallate from natural plant extracts using crowding agents-assisted imprinted polymers. Chromatographia 2015; 78(15-16): 995-1003. [DOI:10.1007/s10337-015-2914-y]
49. Chen T, Gu J, Wang H, Yuan G, Chen L, Xu X, Xiao W. Semi-preparative scale separation of emodin from plant extract by using molecularly imprinted polymer as stationary phase. Chromatographia 2014; 77(13-14): 893-899. [DOI:10.1007/s10337-014-2691-z]
50. Tian M, Bi W, Row KH. Simultaneous extraction and separation of flavonols and flavones from chamaecyparis obtuse by multi‐phase extraction using an ionic liquid‐modified microsphere polymer. Phytochemical analysis 2012; 23(6): 576-581. [DOI:10.1002/pca.2357]
51. Karasová G, Lehotay J, Sádecká J, Skačáni I, Lachová M. Selective extraction of derivates of p‐ hydroxy‐benzoic acid from plant material by using a molecularly imprinted polymer. Journal of separation science 2005; 28(18): 2468-2476. [DOI:10.1002/jssc.200500190]
52. Wang D, Hong SP, Row KH. Solid extraction of caffeine and theophylline from green tea by molecular imprinted polymers. Korean journal of chemical engineering 2004; 21: 853-857. [DOI:10.1007/BF02705530]
53. Lin LQ, Zhang J, Fu Q, He LC, Li YC. Concentration and extraction of sinomenine from herb and plasma using a molecularly imprinted polymer as the stationary phase. Analytica chimica acta 2006; 561(1-2): 178-182. [DOI:10.1016/j.aca.2006.01.011]
54. Khangholi S, Karimi Bekr Z, Sardari S. Lactuca scariola as Provider of Alkaloids to Make Molecularly Imprinted Detection Matrix. 8th National Congress of Medicinal Plants, Tehran, Apr. 24, Iran: Trabiat Modares University.
55. Bi W, Tian M, Row KH. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids. Journal of chromatography A 2012; 1232: 37-42. [DOI:10.1016/j.chroma.2011.08.054]
56. Amiri A, Ramazani A, Jahanshahi M, Moghadamnia AA. Synthesis and evaluating of nanoporous molecularly imprinted polymers for extraction of quercetin as a bioactive component of medicinal plants. Iranian journal of chemistry and chemical engineering 2016; 35(4): 11-19.
57. Dong X, Wang W, Ma S, Sun H, Li Y, Guo J. Molecularly imprinted solid-phase extraction of (−)-ephedrine from Chinese Ephedra. Journal of chromatography A 2005; 1070(1-2): 125-130. [DOI:10.1016/j.chroma.2005.03.017]
58. He G, Tang Y, Hao Y, Shi J, Gao R. Preparation and application of magnetic molecularly imprinted nanoparticles for the selective extraction of osthole in Libanotis Buchtomensis herbal extract. Journal of separation science 2016; 39(12): 2313-2320. [DOI:10.1002/jssc.201600266]
59. Claude B, Viron‐Lamy C, Haupt K, Morin P. Synthesis of a molecularly imprinted polymer for the solid‐phase extraction of obtuse and betulinic acid from plane bark. Phytochemical analysis 2010; 21(2): 180-185. [DOI:10.1002/pca.1175]
60. Muhammad P, Liu J, Xing R, Wen Y, Wang Y, Liu Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Analytica chimica acta 2017; 995: 34-42. [DOI:10.1016/j.aca.2017.09.044]
61. Zhu L, Xu X. Selective separation of active inhibitors of epidermal growth factor receptor from Caragana jubata by molecularly imprinted solid-phase extraction. Journal of chromatography A 2003; 991(2): 151-158. [DOI:10.1016/S0021-9673(03)00207-3]
62. Zhu X, Cao Q, Hou N, Wang G, Ding Z. The preparation and the recognition property of molecularly imprinted polymer of podophyllotoxin. Analytica chimica acta 2006; 561(1-2): 171-177. [DOI:10.1016/j.aca.2006.01.009]
63. Lai JP, He XW, Jiang Y, Chen F. Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction. Analytical and bioanalytical chemistry 2003; 375(2): 264-269. [DOI:10.1007/s00216-002-1675-2]
64. Hu SG, Li L, He XW. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers. Journal of chromatography A 2005; 1062(1): 31-37. [DOI:10.1016/j.chroma.2004.11.036]
65. Xie J, Zhu L, Xu X. Affinitive Separation and On-Line Identification of antitumor components from peganum n igellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry. Analytical chemistry 2002; 74(10): 2352-2360. [DOI:10.1021/ac015755i]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb