Volume 25, Issue 4 (7-2021)                   IBJ 2021, 25(4): 243-254 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghehchian N, Moghbeli M, Mashkani B, Abbaszadegan M R. The Level of Mesenchymal-Epithelial Transition Autophosphorylation is Correlated with Esophageal Squamous Cell Carcinoma Migration. IBJ 2021; 25 (4) :243-254
URL: http://ibj.pasteur.ac.ir/article-1-3242-en.html
Abstract:  
Background: The MET receptor is a critical member of cancer-associated receptor tyrosine kinases and plays an important role in different biological activities, including differentiation, migration, and cell proliferation. Methods: In this study, novel MET inhibitors were introduced and applied on esophageal squamous carcinoma cell line KYSE-30, and the level of proliferation and migration, as well as the activated form of MET receptor protein were assessed in the examined cells. The human KYSE-30 cell line was cultured according to ATCC recommendations. The mRNA level of the MET gene was measured in the examined cell line using the quantitative RT-PCR assay. Cytotoxicity evaluation test was performed at different concentrations of heterocyclic anti-MET compounds (i.e. D1, D2, D5, D6, D7, and D8). Finally, the capability of these compounds in MET receptor inhibition was evaluated using the migration assay and Western blot. All experiments were performed in triplicate and repeated three times with similar results. Results: Cell growth and proliferation were significantly inhibited (p ≤ 0.05) by all the above-mentioned compounds. Moreover, the majority of compounds significantly prevented the cell migration (p ≤ 0.05) and inhibited MET autophosphorylation. Interestingly, the level of phosphorylated MET was significantly correlated with KYSE-30 cell migration. Conclusion: The obtained data introduced and confirmed the biological activities of the mentioned novel compounds in KYSE-30 cells and proposed that the therapeutic inhibition of MET with these compounds may be a powerful approach for inhibiting cancer cell migration and proliferation although some structural optimizations are needed to improve their inhibitory functions.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer 2019; 144(8): 1941-1953. [DOI:10.1002/ijc.31937]
2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA: a cancer journal for clinicians 2021; 71: 7-33. [DOI:10.3322/caac.21654]
3. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: Cell signalling P.M. for invasive growth. Nature reviews cancer 2002; 2(4): 289-300. [DOI:10.1038/nrc779]
4. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141(7): 1117-1134. [DOI:10.1016/j.cell.2010.06.011]
5. Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, Vande Woude GF. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer research 2004; 64(21): 7962-7970. [DOI:10.1158/0008-5472.CAN-04-1043]
6. Birchmeier C, Birchmeier W, Gherardi E, Woude GFV. Met, metastasis, motility and more. Nature reviews molecular cell biology 2003; 4(12): 915-925. [DOI:10.1038/nrm1261]
7. Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 1995; 10(4): 739-749.
8. Soman NR, Wogan GN, Rhim JS. TPR-MET oncogenic rearrangement: Detection by polymerase chain reaction amplification of the transcript and expression in human tumor cell lines. Proceedings of the national academy of sciences 1990; 87(2): 738-742. [DOI:10.1073/pnas.87.2.738]
9. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer and metastasis reviews 2008; 27(1): 85-94. [DOI:10.1007/s10555-007-9107-6]
10. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic research in cardiology 2009; 104(6): 739-749. [DOI:10.1007/s00395-009-0039-x]
11. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL. IFATS collection: Human adipose tissue‐derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem cells 2009; 27(1): 230-237. [DOI:10.1634/stemcells.2008-0273]
12. Sierra JR,Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Therapeutic advances in medical oncology 2011; 3(1 suppl): S21-S35. [DOI:10.1177/1758834011422557]
13. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the national academy of sciences 2005; 102(10): 3766-3771. [DOI:10.1073/pnas.0405957102]
14. Chiara F, Michieli P, Pugliese L, Comoglio PM. Mutations in the met oncogene unveil a "dual switch" mechanism controlling tyrosine kinase activity. Journal of biological chemistry 2003; 278(31): 29352-29358. [DOI:10.1074/jbc.M302404200]
15. Duplaquet L, Kherrouche Z, Baldacci S, Jamme P, Cortot AB, Copin MC, Tulasne D. The multiple paths towards MET receptor addiction in cancer. Oncogene 2018; 37(24): 3200-3215. [DOI:10.1038/s41388-018-0185-4]
16. Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Critical reviews in clinical laboratory sciences 2019; 56(8): 533-566. [DOI:10.1080/10408363.2019.1653821]
17. Ariyawutyakorn W, Saichaemchan S, Varella-Garcia M. Understanding and targeting MET signaling in solid tumors-are we there yet? Journal of cancer 2016; 7(6): 633. [DOI:10.7150/jca.12663]
18. Gherardi, E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nature reviews cancer 2012; 12(2): 89-103. [DOI:10.1038/nrc3205]
19. Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. International journal of molecular sciences 2018; 19(11): 3491. [DOI:10.3390/ijms19113491]
20. Pérez-Ramírez C, Cañadas-Garre M, Jiménez-Varo E, Faus-Dáder MJ, Calleja-Hernández MÁ. MET: A new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics 2015; 16(6): 631-647. [DOI:10.2217/pgs.15.11]
21. Mo HN, Liu P. Targeting MET in cancer therapy. Chronic diseases and translational medicine 2017; 3(3): 148-153. [DOI:10.1016/j.cdtm.2017.06.002]
22. Zhu K, Kong X, Zhao D, Liang Z, Luo C. c-MET kinase inhibitors: a patent review (2011-2013). Expert opinion on therapeutic patents 2014.; 24(2): 217-230. [DOI:10.1517/13543776.2014.864279]
23. Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Oncotargets and therapy 2014; 7: 969. [DOI:10.2147/OTT.S40241]
24. Lee J, Tran P, Klempner SJ. Targeting the MET pathway in gastric and oesophageal cancers: refining the optimal approach. Clinical oncology 2016 ; 28(8): e35-44. [DOI:10.1016/j.clon.2016.01.009]
25. Scagliotti GV,Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer treatment reviews 2013; 39(7): 793-801. [DOI:10.1016/j.ctrv.2013.02.001]
26. Rezaeian S, Rahimizadeh M, Eshghi H, Bakavoli M, Haghbin K, Saadatmandzadeh M. Synthesis of the new heterocyclic system 7, 8-dihydro-6H-benzotetrazolo-thiadiazine and derivatives. Heterocyclic communications 2014; 20(6): 339-341. [DOI:10.1515/hc-2014-0111]
27. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Advanced drug delivery reviews 2016; 101: 89-98. [DOI:10.1016/j.addr.2016.05.007]
28. Balakin KV, Ivanenkov YA, Skorenko AV, Nikolsky YV, Savchuk NP, Ivashchenko AA. In silico estimation of DMSO solubility of organic compounds for bioscreening. Journal of biomolecular screening 2004; 9(1): 22-31. [DOI:10.1177/1087057103260006]
29. Balakin KV, Savchuk NP, Tetko IV. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Current medicinal chemistry 2006; 13(2): 223-241. [DOI:10.2174/092986706775197917]
30. Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T. Characterization of 21 newly established esophageal cancer cell lines. Cancer 1992; 69(2): 277-284. https://doi.org/10.1002/1097-0142(19920115)69:2<277::AID-CNCR2820690202>3.0.CO;2-C [DOI:10.1002/1097-0142(19920115)69:23.0.CO;2-C]
31. Mohammadi F, Javid H, Afshari AR, Mashkani B, Hashemy SI. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Molecular biology reports 2020; 47: 4263-4272. [DOI:10.1007/s11033-020-05532-1]
32. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell adhesion and migration 2014; 8(5): 440-451. [DOI:10.4161/cam.36224]
33. Mahmood T, Yang PC. Western blot: technique, theory and trouble shooting. North American journal of medical sciences 2014; 4(9): 429-434. [DOI:10.4103/1947-2714.100998]
34. Sutter AP, Höpfner M, Huether A, Maaser K, Scherübl K. Targeting the epidermal growth factor receptor by erlotinib (Tarceva™) for the treatment of esophageal cancer. International journal of cancer 2006; 118(7): 1814-1822. [DOI:10.1002/ijc.21512]
35. Schlessinger J .Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor perspectives in biology 2014; 6(3): a008912. [DOI:10.1101/cshperspect.a008912]
36. Demkova L, Kucerova L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Molecular cancer 2018; 17(1): 26. [DOI:10.1186/s12943-018-0795-z]
37. Maroun CR,Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacology and therapeutics 2014; 142(3): 316-338. [DOI:10.1016/j.pharmthera.2013.12.014]
38. Liu X, Wang Q, Yang G, Marando C, Koblish HK, Hall LM, Fridman JS, Behshad E, Wynn R, Li Y, Boer J, Diamond S, He C, Xu M, Zhuo G, Yao W, Newton RC, Scherle PA. A novel kinase inhibitor INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and crosstalk with EGFR and HER-3. Clinical cancer research 2011; 17(22): 7127-7138. [DOI:10.1158/1078-0432.CCR-11-1157]
39. Regad T. Targeting RTK signaling pathways in cancer. Cancers 2015; 7(3): 1758-1784. [DOI:10.3390/cancers7030860]
40. Ma PC, Tretiakova MS, Nallasura V, Husain AN, Salgia R. Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. British journal of cancer 2007; 97(3): 368-377. [DOI:10.1038/sj.bjc.6603884]
41. Hsieh YS, Liao CH, Chen WS, Pai JT, Weng MS. Shikonin inhibited migration and invasion of human lung cancer cells via suppression of c‐Met‐mediated epithelial‐to‐mesenchymal transition. Journal of cellular biochemistry 2017; 118(12): 4639-4651. [DOI:10.1002/jcb.26128]
42. Salvi A, Arici B, Portolani N, Giulini SM, De Petro G, Barlati S. In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. International journal of oncology 2007; 31(2): 451-460. [DOI:10.3892/ijo.31.2.451]
43. Suzuki, Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H, Nakamura T, Matsumoto K. Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. International journal of cancer 2010; 127(8): 1948-1957. [DOI:10.1002/ijc.25197]
44. Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B, Yun Y, Liu W, Wang H, Wang Y, Wen N. FoxM1 promotes epithelial-mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-Met/AKT-dependent positive feedback loop. Anti-cancer drugs 2018; 29(3): 216. [DOI:10.1097/CAD.0000000000000585]
45. Guo Y, Tao M, Jiang M. MicroRNA-454-3p inhibits cervical cancer cell invasion and migration by targeting c-Met. Experimental and therapeutic medicine 2018; 15(3): 2301-2306. [DOI:10.3892/etm.2018.5714]
46. Gao Y, Zeng F, Wu JY, Li HY, Fan JJ, Mai L, Zhang J, Ma DM, Li Y, Song FZ. MiR-335 inhibits migration of breast cancer cells through targeting oncoprotein c-Met. Tumor biology 2015; 36(4): 2875-2883. [DOI:10.1007/s13277-014-2917-6]
47. Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, Qiu X, Wang E. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PloS one 2013; 8(5): e64759. [DOI:10.1371/journal.pone.0064759]
48. Han C, Zhou Y, An Q, Li F, Li D, Zhang X, Yu Z, Zheng L, Duan Z, Kan Q. MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumor biology 2015; 36(9): 6715-6723. [DOI:10.1007/s13277-015-3358-6]
49. Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J, Lu F, Tu L, Qu J. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Investigative ophthalmology and visual science 2009; 50(4): 1559-1565. [DOI:10.1167/iovs.08-2681]
50. Li X, Sun X, Wu J, Li Z. MicroRNA-613 suppresses proliferation, migration and invasion of osteosarcoma by targeting c-MET. American journal of cancer research 2016; 6(12): 2869.
51. Chan B, VanderLaan PA, Sukhatme VP. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochemical and biophysical research communications 2013; 439(2): 247-251. [DOI:10.1016/j.bbrc.2013.08.048]
52. Ozawa Y, Nakamura Y, Fujishima F, Felizola SJ, Takeda K, Okamoto H, Ito K, Ishida H, Konno T, Kamei T, Miyata G, Ohuchi N, Sasano H. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target. BMC cancer, 2015; 15(1): 451. [DOI:10.1186/s12885-015-1450-3]
53. Xu Y, Peng Z, Li Z, Lu M, Gao J, Li Y, Shen L. Expression and clinical significance of c-Met in advanced esophageal squamous cell carcinoma. BMC cancer 2015; 15(1): 6. [DOI:10.1186/s12885-014-1001-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb