Volume 25, Issue 1 (1-2021)                   IBJ 2021, 25(1): 47-53 | Back to browse issues page

PMID: 33129239


XML Print


Abstract:  
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this study was to examine the link of oxidative and genotoxic DNA damage with DNA repair OGG1 gene polymorphism, in charcoal workers exposed to polyaromatic hydrocarbons. Methods: Urinary 8-OHdG excretion (a biomarker of oxidative DNA damage) was determined in both exposed and control populations. Genotyping of OGG1 DNA repair gene in the blood samples of subjects was carried out by PCR-RFLP method. Results: The 8-OHdG urinary concentration was significantly higher (p < 0.05) in the exposed (geometric mean 12.33 ± 3.78) than in the unexposed (geometric mean 7.36 ± 2.29) population. DNA damage, as measured by 8-OHdG and tail moment content, was found to be significantly higher in OGG1 homozygous mutants (mt/mt; 18.81 ± 3.34; 6.04 ± 0.52) as compared to wild-type genotypes (wt/wt; 10.34 ± 2.25; 5.19 ± 2.50) and heterozygous (wt/mt) mutants (12.82 ± 2.81; 6.04 ± 0.93) in the exposed group. Conclusion: We found a significant association of OGG1 heterozygous (wt/mt) and homozygous (mt/mt) variants with oxidative and genotoxic damage, suggesting that these polymorphisms may modulate the effects of polycyclic aromatic hydrocarbons exposure in occupational workers.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Rajendran P, Jayakumar T, Nishigaki I, Ekambaram G, Nishigaki Y, Vetriselvi J, Sakthisekaran S. Immuno-modulatory effect of mangiferin in experimental animals with benzo(a) pyrene-induced lung carcinogenesis. International journal of biomedical science 2013; 9(2): 68-74.
2. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the patho mechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative medicine and cellular longevity 2016; 3164734. [DOI:10.1155/2016/3164734]
3. Gao Y, Wang P, Wang Z, Han L, Li J, Tian C, Zhao F, Wang J, Zhao F, Zhang Q and Yumin Lyu Y. Serum 8-Hydroxy-2′-deoxyguanosine level as a potential biomarker of oxidative DNA damage induced by ionizing radiation in human peripheral blood. Dose response 2019; 17(1): doi: 10.1177/1559325818820649. [DOI:10.1177/1559325818820649]
4. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009; 30(1): 2-10. [DOI:10.1093/carcin/bgn250]
5. Pawlas N, Olewińska E, Markiewicz-Górka I, Kozłowska A, Januszewska L, Lundh T, Januszewska E, Pawlas K. Oxidative damage of DNA in subjects occupationally exposed to lead. Advances in clinical and experimental medicine 2017; 26(6): 939-945. [DOI:10.17219/acem/64682]
6. Pandey AK, Bajpayee M, Parmar D, Rastogi SK, Mathur N, Seth PK, Dhawan A. DNA damage in lymphocytes of rural Indian women exposed to biomass fuel smoke as assessed by the comet assay, Environmental and molecular mutagenesis 2005; 45(5): 435-441. [DOI:10.1002/em.20106]
7. Wong RH, Chang SY, Ho SW, Huang PL, Liu YJ, Chen YC, Yeh YH, Lee HS. Polymorphisms in metabolic GSTP1 and DNA-repair XRCC1 genes with an increased risk of DNA damage in pesticide-exposed fruit growers. Mutation research 2008; 654(2): 168-175. [DOI:10.1016/j.mrgentox.2008.06.005]
8. Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology 2003; 193(1-2): 3-34. [DOI:10.1016/S0300-483X(03)00287-7]
9. Ba X, Aguilera-Aguirre L, Ain Nmi Rashid QT, Bacsi A, Radak Z, Sur S, Hosoki K, Hegde ML, Boldogh I. The role of 8-oxoguanine DNA glycosylase-1 in inflammation. International journal of molecular science 2014; 15(9): 16975-16997. [DOI:10.3390/ijms150916975]
10. Karihtala P, Kauppila S, Puistola U, Jukkola-Vuorinen A. Absence of the DNA repair enzyme human 8-oxoguanine glycosylase is associated with an aggressive breast cancer phenotype. British journal of cancer 2012; 106(2): 344-347. [DOI:10.1038/bjc.2011.518]
11. Shin HS, Lim HH. Simultaneous determination of 2-naphthol and 1-hydroxy pyrene in urine by gas chromatography-mass spectrometry. Journal of chromatography B 2011; 879(7-8): 489-494. [DOI:10.1016/j.jchromb.2011.01.009]
12. Jaffe M. Ueber den Niederschlag welchen Pikrinsäure in normalen Harn erzeugt und über eine neue reaction des Kreatinins. Hoppe-seyler's zeitschrift fur physiologische chemie 1886; 10: 391-400.
13. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research 1988; 175(1): 184-191. [DOI:10.1016/0014-4827(88)90265-0]
14. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and molecular mutagenesis 2000; 35(3): 206-221. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J [DOI:10.1002/(SICI)1098-2280(2000)35:33.0.CO;2-J]
15. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiation research 1990; 122(1): 86-94. [DOI:10.2307/3577587]
16. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research 1988; 16(3): 1215. [DOI:10.1093/nar/16.3.1215]
17. Miglani K, Ahmad I, Yadav A, Aggarwal N, Gupta R. Evaluation of oxidative damage and antioxidant defense potential in charcoal workers exposed to polyaromatic hydrocarbons. International journal of current research 2016; 8: 35454-35463.
18. Choosong T, Phakthongsuk P, Tekasakul S, Tekasakul, P. Urinary 1-hydroxypyrene levels in workers exposed to polycyclic aromatic hydrocarbon from rubber wood burning. Safety and health at work 2014; 5(2): 86-90. [DOI:10.1016/j.shaw.2014.03.004]
19. Wenjuan C, Jianzhong L, Chong L, Yanjun G, Keqing L, Hanzhang W, Zhiping W. The hOGG1 Ser326Cys gene polymorphism and susceptibility for bladder cancer: A meta-analysis. International Brazilian journal of urology 2016; 42(5): 883-896. [DOI:10.1590/S1677-5538.IBJU.2015.0446]
20. Fu Y, Niu Y, Pam B, Liu Y, Zhang B, Li X, Yang A, Nie J, Wang R, Yang J. OGG1 methylation mediated the effects of cell cycle and oxidative DNA damage related to PAHs exposure in Chinese coke oven worker. Chemosphere 2019; 224:48-57. [DOI:10.1016/j.chemosphere.2019.02.114]
21. Nguyen TTU, Kawanami S, Kawai K, Kasai H, Li YS, Inoue J, Ngoan LT, Horie S. Urinary 1-hydroxypyrene and 8-hydroxydeoxyguanosine levels among coke-oven workers for 2 consecutive days. Journal of occupational health 2014; 56(3): 178-185. [DOI:10.1539/joh.13-0222-OA]
22. Chen SK, Hsieh WA, Tsai MH, Chen CC, Hong AI, Wei YH, Chang WP. Age-associated decrease of oxidative repair enzymes, human 8-oxoguanine DNA glycosylases (hOGG1), in human aging. Journal of radiation research (Tokyo) 2003; 44: 31-35. [DOI:10.1269/jrr.44.31]
23. Aka P, Mateuca R, Buchet JP, Thierens H, Kirsch-Volders M. Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations? Mutation research 2004; 556(1-2): 169-181. [DOI:10.1016/j.mrfmmm.2004.08.002]
24. Pawlowska E, Janik-Papis K, Rydzanicz M, Zuk K, Kaczmarczyk D, Olszewski J, Szyfter K, Blasiak J, Morawiec-Sztandera A. The Cys326 allele of the 8-oxoguanine DNA N-glycosylase 1 gene as a risk factor in smoking- and drinking-associated larynx cancer. Tohoku journal of experimental medicine 2009; 219(4): 269-275. [DOI:10.1620/tjem.219.269]
25. Paz-Elizur T, Krupsky M., Blumenstein S, Elinger D, Schechtman E, Zvi Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer. Journal of the national cancer institute 2003; 95(17): 1312-1319. [DOI:10.1093/jnci/djg033]
26. Wei Q, Cheng L, Hong WK, Spitz MR. Reduced DNA repair capacity in lung cancer patients. Cancer research 1996; 56(18): 4103-4107.
27. Chen H, Sun C, Guo W, Meng R, Du H, Qi Q, Gu X, Li L, Zhang K, Zhu D, Wang Y. AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA and could be a risk factor for type 2 diabetes in a Chinese population. Molecular and cellular endocrinology 2011; 332(1-2): 301-305. [DOI:10.1016/j.mce.2010.11.021]
28. Synowiec E, Stefanska, J, Morawiec, Z, Blasiak J, Wozniak K. Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutation research 2008; 648(1-2): 65-72. [DOI:10.1016/j.mrfmmm.2008.09.014]
29. Cho EY, Hildesheim A, Chen CJ, Hsu MM, Chen IH, Mittl BF, Levine PH, Liu MY, Chen JY, Brinton LA, Cheng YJ, Yang CS. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer epidemiology biomarker and prevention 2003; 12(10): 1100-1104.
30. Smart DJ, Chipman JK, Hodges NJ. Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2′-deoxyguanosine. DNA repair 2006; 5(11): 1337-1345. [DOI:10.1016/j.dnarep.2006.06.001]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.