Volume 24, Issue 6 (10-2020)                   ibj 2020, 24(6): 386-398 | Back to browse issues page

PMID: 32660224
PMCID: PMC7601545

XML Print

Introduction: Biofilm formation in Staphylococcus aureus is a major virulence factor. Both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are common causes of community- and hospital-acquired infections and are associated with biofilm formation. The status of biofilm-forming genes has not been explored in Jordanian nasal carriers of S. aureus. This study investigates antibiotic resistance patterns and the prevalence of biofilm-forming genes between MSSA and MRSA in two distinct populations in Jordan. Methods: A total of 35 MSSA and 22 MRSA isolates were recovered from hospitalized patients and medical students at Prince Hamzah Hospital, Jordan. Antibiotic susceptibility was tested using disk diffusion method and Vitek 2 system. The phenotypic biofilm formation was tested using Congo red agar and microtiter plate assays. The prevalence of the biofilm-forming genes was determined using multiplex PCR. Results: Among 57 S. aureus isolates, 22 (38.6%) isolates were MRSA and were highly resistant against benzylpenicillin, oxacillin, and imipenem. The frequencies of the icaADBC were 77.1%, 97.1%, 94.3%, and 97.1% respectively in MSSA compared to 86.4%, 100%, 100%, and 100% in MRSA isolates. On the other hand, the frequency of the fnbA, fnbB, clfA, fib, clfB, ebps, eno, and cna genes was 81.8%, 90.9%, 95.5%, 90.9%, 86.4%, 100%, 100%, and 40.9%, respectively in the MRSA isolates. Conclusion: In both groups, MRSA isolates, in comparison to MSSA, were significantly more resistant to cefoxitin, oxacillin, imipenem, tetracycline, clindamycin, and trimethoprim-sulfamethoxazole. Unexpectedly, biofilm formation and gene prevalence between MRSA and MSSA isolates showed no significant difference, suggesting other potential virulence mechanisms.
Type of Study: Full Length | Subject: Molecular Microbiology

1. Laux C, Peschel A, Krismer B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members. Microbiol spectrum 2019; 7(2): 29. [DOI:10.1128/microbiolspec.GPP3-0029-2018]
2. Anderson MJ, Schaaf E, Breshears LM, Wallis HW, Johnson JR, Tkaczyk C, Sellman BR, Sun J, Peterson ML. Alpha-Toxin contributes to biofilm formation among staphylococcus aureus wound isolates. Toxins (Basel) 2018; 10(4): 157. [DOI:10.3390/toxins10040157]
3. Shrestha LB, Baral R, Khanal B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infectiont drug resistance 2019; 12: 957-963. [DOI:10.2147/IDR.S200988]
4. Desrousseaux C, Sautou V, Descamps S, Traore O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. Journal of hospital infection 2013; 85(2): 87-93. [DOI:10.1016/j.jhin.2013.06.015]
5. Kirui DK, Weber G, Talackine J, Millenbaugh NJ. Targeted laser therapy synergistically enhances
6. efficacy of antibiotics against multi-drug resistant staphylococcus aureus and pseudomonas aeruginosa biofilms. Nanomedicine 2019; 20: 102018. [DOI:10.1016/j.nano.2019.102018]
7. Upreti N, Rayamajhee B, Sherchan SP, Choudhari MK, Banjara MR. Prevalence of methicillin resistant Staphylococcus aureus, multidrug resistant and extended spectrum β-lactamase producing Gram negative bacilli causing wound infections at a tertiary care hospital of Nepal. Antimicrobial resistance and infection control 2018; 7: 121. [DOI:10.1186/s13756-018-0408-z]
8. Otto M. Staphylococcal biofilms. Microbiolgy spectrum 2018; 6(4): 23. [DOI:10.1128/microbiolspec.GPP3-0023-2018]
9. Lerch MF, Schoenfelder SMK, Marincola G, Wencker FDR, Eckart M, Forstner KU, Sharma CM, Thormann KM, Kucklick M, Engelmann S, Ziebuhr W. A non-coding RNA from the intercellular adhesion (ica) locus of Staphylococcus epidermidis controls polysaccharide intercellular adhesion (PIA)-mediated biofilm formation. Molecular microbiology 2019; 111(6): 1571-1591. [DOI:10.1111/mmi.14238]
10. Mirzaee M, Najar-Peerayeh S, Behmanesh M, Moghadam MF. Relationship between adhesin genes and biofilm formation in vancomycin-intermediate Staphylococcus aureus clinical isolates. Current microbiolgy 2015; 70(5): 665-670. [DOI:10.1007/s00284-014-0771-9]
11. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011; 2(5): 445-459. [DOI:10.4161/viru.2.5.17724]
12. Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in cellular and infection microbiolgy 2015; 5: 7. [DOI:10.3389/fcimb.2015.00007]
13. Morales M, Mendez-Alvarez S, Martin-Lopez JV, Marrero C, Freytes CO. Biofilm: the microbial "bunker" for intravascular catheter-related infection. Support care cancer 2004; 12(10): 701-707. [DOI:10.1007/s00520-004-0630-5]
14. Ko YP, Flick MJ. Fibrinogen is at the interface of host defense and pathogen virulence in Staphylococcus aureus infection. Seminars in thrombosis and hemostasis 2016; 42(4): 408-421. [DOI:10.1055/s-0036-1579635]
15. Theos KR, Johnson KM, Johnson DW. Staphylococcus aureus antibiotic susceptibilities in infections in an outpatient dermatology office on O'ahu. Hawaii journal medicine public health 2019; 78(5): 163-168.
16. Al-Tamimi M, Himsawi N, Abu-Raideh J, Abu Jazar D, Al-Jawaldeh H, Al Haj Mahmoud S, Hijjawi N, Hawamdeh H. Nasal colonization by methicillin-sensitive and methicillin-resistant. Staphylococcus aureus among medical students. The journal of infection in developing countries 2018; 12(05): 326-335. [DOI:10.3855/jidc.9908]
17. Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and limitations in clinical investigation of bacterial biofilms. Clinical microbiol reviews 2018; 31(3): 84-116. [DOI:10.1128/CMR.00084-16]
18. Nourbakhsh F, Namvar AE. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and infection control 2016; 11: 7.
19. Breves A, Miranda CAC, Flores C, Filippis Id, Clementino MM. Methicillin and vancomycin resistant Staphylococcus aureus in health care workers and medical devices. Jornal brasileiro de patologia e medicina laboratorial 2015; 51(3): 143-152. [DOI:10.5935/1676-2444.20150025]
20. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunanidhi A, Mateg Ali A, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Chong Seng JS, Nathan JJ, Pei CP. Prevalence of adhesion and regulation of biofilm-related genes in different clones
21. of Staphylococcus aureus. Journal biomedicine biotechnolgy 2012; 2012: 976972.
22. de Castro Melo P, Ferreira LM, Filho AN, Zafalon LF, Vicente HI, de Souza V. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Brazilian journal of microbiology 2013; 44(1): 119-124. [DOI:10.1590/S1517-83822013005000031]
23. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin resistant Staphylococcus aureus as a public health threat. The lancet 2006; 368(9538): 874-885. [DOI:10.1016/S0140-6736(06)68853-3]
24. Savage VJ, Chopra I, Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial agents and chemotherapy 2013; 57(4): 1968-1970. [DOI:10.1128/AAC.02008-12]
25. Kossow A, Stühmer B, Schaumburg F, Becker K, Glatz B, Möllers M, Kampmeier S, Mellmann A. High prevalence of MRSA and multi-resistant gram-negative bacteria in refugees admitted to the hospital-But no hint of transmission. PLoS one 2018; 13(5): e0198103. [DOI:10.1371/journal.pone.0198103]
26. Aro T, Kantele A. High rates of meticillin resistant Staphylococcus aureus among asylum seekers and refugees admitted to Helsinki University Hospital, 2010 to 2017. Eurosurveillance 2018; 23(45): 1700797. [DOI:10.2807/1560-7917.ES.2018.23.45.1700797]
27. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, MacKenzie FM. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International journal of antimicrobial agents 2012; 39(4): 273-282. [DOI:10.1016/j.ijantimicag.2011.09.030]
28. Al-Zoubi MS, Al-Tayyar IA, Hussein E, Jabali AA, Khudairat S. Antimicrobial susceptibility pattern of Staphylococcus aureus isolated from clinical specimens in northern area of jordan. Iranian journal of microbiolgy 2015; 7(5): 265-272.
29. Torlak E, Korkut E, Uncu AT, Şener Y. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of infection and public health 2017; 10(6): 809-813. [DOI:10.1016/j.jiph.2017.01.004]
30. Triveni AG, Suresh Kumar M, Manjunath C, Shivannavar CT, Gaddad SM. Biofilm formation by clinically isolated Staphylococcus aureus from India. The journal of infection in developing countries 2018; 12(12): 1062-1066. [DOI:10.3855/jidc.10671]
31. Darwish SF, Asfour HA. Investigation of biofilm forming ability in Staphylococci causing bovine mastitis using phenotypic and genotypic assays. Scientific world journal 2013; 2013: 378492. [DOI:10.1155/2013/378492]
32. Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in staphylococcus aureus. Journal of bacteriology 2001; 183(17): 5171-5179. [DOI:10.1128/JB.183.17.5171-5179.2001]
33. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature reviews microbiology 2014; 12(1): 49-62. [DOI:10.1038/nrmicro3161]
34. Serray B, Oufrid S, Hannaoui I, Bourjilate F, Soraa N, Mliji M, Sobh M, Hammoumi A, Timinouni M, El Azhari M. Genes encoding adhesion factors and biofilm formation in methicillin-resistant Staphylococcus aureus in Morocco. The journal of infection in developing countries 2016; 10(08): 863-869. [DOI:10.3855/jidc.8361]
35. Liberto MC, Matera G, Quirino A, Lamberti AG, Capicotto R, Puccio R, Barreca GS, Focà E, Cascio A, Focà A. Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiological research 2009; 164(5): 522-528. [DOI:10.1016/j.micres.2007.04.004]
36. Růžička F, Holá V, Votava M, Tejkalová R, Horvát R, Heroldová M, Woznicová V. Biofilm detection and the clinical significance of Staphylococcus epidermidis isolates. Folia microbiologica 2004; 49(5): 596-600. [DOI:10.1007/BF02931540]
37. Cha JO, Yoo JI, Yoo JS, Chung H-S, Park SH, Kim HS, Lee YS, Chung GT. Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus. Osong public health and research perspectives 2013; 4(5): 225-232. [DOI:10.1016/j.phrp.2013.09.001]
38. Gowrishankar S, Kamaladevi A, Balamurugan K, Pandian SK. In vitro and in vivo biofilm characterization of Methicillin resistant Staphylococcus aureus from patients associated with pharyngitis infection. BioMed research iternational 2016; 2016: 14. [DOI:10.1155/2016/1289157]
39. Mirzaee M, Najar-Peerayeh S, Behmanesh M. Prevalence of fibronectin binding protein (FnbA and FnbB) genes among clinical isolates of methicillin resistant Staphylococcus aureus. Molecular genetics, microbiology and virology 2015; 30: 221-224. [DOI:10.3103/S0891416815040072]
40. Posner MG, Upadhyay A, Abubaker AA, Fortunato TM, Vara D, Canobbio I, Bagby S, Pula G. Extracellular Fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits the formation of platelet leukocyte complexes. Journal biological chemistry 2016; 291(6): 2764-2776. [DOI:10.1074/jbc.M115.678359]
41. Klein RC, Fabres-Klein MH, Brito MA, Fietto LG, Ribon Ade O. Staphylococcus aureus of bovine origin: genetic diversity, prevalence and the expression of adhesin-encoding genes. Veterinary microbiology 2012; 160(1-2): 183-188. [DOI:10.1016/j.vetmic.2012.05.025]
42. Ghasemian A, Najar Peerayeh S, Bakhshi B, Mirzaee M. High Frequency of icaAD, clumping factors A/B, fib and eno Genes in Staphylococcus aureus Species Isolated From Wounds in Tehran, Iran during 2012-2013. Archive of clinical infectious diseases; 10(4): e23033. [DOI:10.5812/archcid.23033]
43. Madani A, Garakani K, Mofrad MRK. Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen. PLoS one 2017; 12(6): e0179601. [DOI:10.1371/journal.pone.0179601]
44. Dai J, Wu S, Huang J, Wu Q, Zhang F, Zhang J, Wang J, Ding Y, Zhang S, Yang X, Lei T, Xue L, Wu H. prevalence and characterization of Staphylococcus aureus isolated From pasteurized milk in China. Frontiers in microbiology 2019; 10: 641. [DOI:10.3389/fmicb.2019.00641]
45. Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microbial pathogenesis 2010; 49(1-2): 14-22. [DOI:10.1016/j.micpath.2010.03.007]
46. Nakakido M, Tanaka Y, Tsumoto K. The N-terminal domain of elastin-binding protein of Staphylococcus aureus changes its secondary structure in a membrane-mimetic environment. The journal of biochemistry 2007; 142(2): 131-134. [DOI:10.1093/jb/mvm131]
47. Shekarabi M, Hajikhani B, Salimi Chirani A, Fazeli M, Goudarzi M. Molecular characterization of vancomycin-resistant Staphylococcus aureus strains isolated from clinical samples: A three year study in Tehran, Iran. PLoS one 2017; 12(8): e0183607. [DOI:10.1371/journal.pone.0183607]
48. Chen Z, Han C, Huang X, Liu Y, Guo D, Ye X. A molecular epidemiological study of methicillin-resistant and methicillin-susceptible Staphylococcus aureus contamination in the airport environment. Infection drug resistance 2018; 11: 2363-2375. [DOI:10.2147/IDR.S178584]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.