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ABSTRACT 
 

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining 
cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-
canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt signaling (or the 
Wnt/β-Catenin signal transduction) leads to a variety of human diseases, including cancers, neurodegenerative 
disorders, skin and bone diseases, and heart deficiencies. Therefore, Wnt/β-Catenin signal transduction is a 
potential clinical target for the treatment of not only human cancers but also some other human chronic diseases. 
Here, some recent results including those from my laboratory highlighting the role of Wnt/β-Catenin signal 
transduction in human cancers will be reviewed. After a brief overview on canonical Wnt signaling and 
introducing some critical β-Catenin/TCF-target genes, the interaction of canonical Wnt signaling with some 
common human cancers will be discussed. In the end, the different segments of the aforesaid signaling pathway, 
which have been considered as targets for clinical purposes, will be scrutinized. DOI: 10.29252/ibj.24.5.264    
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INTRODUCTION 

 
he Wnt/Frizzled-mediated signal transduction 

includes several signaling pathways, which 

have collectively been divided into two groups 

of biological processes based on the involvement of the 

β-Catenin protein
[1,2]

. The original model for Wnt 

signaling pathway had a central component called β-

Catenin, the homolog of Armadillo protein in 

Drosophila
[3,4]

. Today, this signaling pathway has been 

named “the canonical Wnt signaling” or “the Wnt/β-

Catenin” pathway
[5-7]

. For years, it has been thought 

that Wnt signaling is only one pathway (Fig. 1). Now, 

we have learned that the signals transmitted through 

the Wnts and their cognate receptors (Frizzled 

proteins) lead to at least three important biological 

processes, which two of them apparently are not 

directly dependent on β-Catenin protein
[1,2] 

(Fig. 2). 

These two signaling pathways are called “non-

canonical”. This article mainly discusses the canonical 

Wnt signaling and its potential role in human cancers. 

However, it is worth mentioning that the deregulation 

of the non-canonical Wnt pathways also occurs in 

human malignancies, and interestingly, based on recent 

results the non-canonical Wnt signaling pathways have 

an important function in the survival, invasion, and 
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metastasis of some human cancers
[7-9]

.  

The first indication of the interaction between Wnt 

signaling pathways and cancer was discovered in 

Harold Varmus’s laboratory where it was found that 

the retroviral integration-mediated activation of a gene 

called int1 led to mammary tumor formation in 

mice
[10,11]

. The gene int1 was detected to be very 

similar to the Drosophila segment polarity gene, 

wingless. Then scientists combined the names of these 

two genes and chose wnt1 as the first vertebrate 

homolog of wingless. Human genome encodes 19 

different Wnt proteins and 10 different Frizzled 

receptors
[12]

. Although it has been reported that some 

of these proteins work specifically for either canonical 

or non-canonical Wnt signaling, there are some results 

showing that a number of  Wnt proteins (like Wnt-5a) 

can activate both types of Wnt pathways
[13]

. The 

specificity of  the  signals  via  Wnt   proteins  probably 

 

depends on many proteins, which regulate canonical 

and non-canonical Wnt signaling pathways, especially 

the regulators at upstream levels. Both heterotrimeric 

G-protein-coupled receptors and Frizzleds demonstrate 

a high level of structural similarities as they contain 

seven hydrophobic transmembrane domains
[14]

. There 

is sufficient evidence for the involvement of G-proteins 

in the regulation of both canonical and non-canonical 

Wnt pathways
[15-22].

 The regulatory role of 

heterotrimeric G-proteins can probably help us to find 

out more about the specificity of the signals through 

Wnt/Frizzled proteins. Also, this very important 

discovery that Frizzled proteins are not the only 

receptors for Wnt ligands adds another level of 

complexity to the Wnt-mediated signaling pathways. 

LRP5/6 and the receptor tyrosine kinases, ROR/RYK, 

are the known co-receptors for canonical and non-

canonical Wnt pathways, respectively
[5,6]

. 

 
 

 
Fig. 1. (A) The original model for Wg signaling in Drosophila, the core of the current model for the canonical Wnt signal 

transduction (the Wnt/β-Catenin pathway). (B) The simplified model for the canonical Wnt signalling in vertebrates. In the absence of 

the Wnt ligands, the destruction protein complex (including APC, Axin, GSK-3β, CK1, β-Trcp, and β-Catenin) works in favour of β-

Catenin phosphorylation and its subsequent ubiquitin-mediated proteolysis (u letters on β-Catenin in the destruction complex). β-

Catenin phosphorylation occurs at some serine and threonine residues located at amino-terminal segment of the protein (p letters on β-

Catenin in the destruction complex). The protein kinases, GSK-3β and CK1, are responsible for the phosphorylation of β-Catenin in 

the destruction complex. In the presence of the Wnt proteins and activation of the Frizzled receptors, some components of the 

destruction complex, including Axin and GSK-3β, are recruited to the cell membrane via Dvl protein and form a protein complex, 

called “signalosome”.[23] Phosphorylation of LRP co-receptor plays an important role in formation and stabilization of signalosome. 

Dissociation of the destruction complex leads to a significant decrease in β-Catenin phosphorylation; therefore, this protein 

accumulates in the cell. Increase in β-Catenin cellular levels may lead to its nuclear translocation and its interaction with the TCF/Lef 

transcription factors. Transcriptional regulation of some very important cellular genes appears to be the final outcome of β-Catenin 

nuclear translocation. NM, nuclear membrane; APC, adenomatous polyposis coli; Axin, axis inhibitor; CK1, casein kinase 1; GSK-3β, 

glycogen synthase kinase-3 beta; Lef, lymphoid enhancer factor; LRP5/6, low-density lipoprotein receptor-related protein 5/6; β-TrCP, 

beta-transducin repeat containing protein; TCF, T-cell factor.  
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Fig. 2. Two well-known non-canonical Wnt signalling pathways, including Wnt/Ca2+ (right) and Wnt/PCP (left). There are results 

supporting that both pathways are dependent on heterotrimeric G-protein signaling[20,21]. While LRP5/6 appears to work specifically 

for canonical Wnt signaling (Fig. 1), the co-receptors for non-canonical Wnt pathways belong to the family of RTKs (ROR1/2 and 

RYK). The Wnt/Ca2+ pathway functions through the G-proteins that activate certain isoforms of the enzyme, PLC. Activation of PLC 

converts the phospholipid, PIP2, to DAG and IP3, which are two very important cellular second messengers. DAG is a direct activator 

of PKC, a multifunctional protein kinase in the cell, involved in the regulation of several cellular processes. IP3, on the other hand, 

interacts with its receptors on endoplasmic reticulum and leads to the intracellular release of calcium. Calcium is a co-factor for the 

activity of many important cellular proteins, including PKC, CamKII (Ca²/calmodulin-dependent protein kinase II), and Calcineurin. 

As a protein phosphatase, Calcineurin can activate some transcription factors, including NFAT and therefore take part in the regulation 

of transcription of some important cellular genes. The other non-canonical Wnt signaling indicated in the Figure is a critical pathway 

involved in determining PCP. Wnt/Frizzled-mediated activation of this pathway with the help of the co-receptors (ROR2/RYK) signals 

through Dvl and heterotrimeric G-proteins (not shown in the Figure) to activate small GTPases like RhoA and Rac1. Activation of 

these small GTPases at least has two biological outcomes, reorganization of cell cytoskeleton and transcriptional regulation of some 

very important cellular genes mediated by transcription factors like c-Jun and AP1, a heterodimer of c-Jun and c-Fos transcription 

factors. DAAM1, disheveled-associated activator of morphogenesis 1; JNK, c-Jun N-terminal kinase; ROCK, Rho-

associated protein kinase; PCP, planar cell polarity; PLC, phospholipase C; DAG, diacyl glycerol; NFAT, nuclear factor of activated 

T-cells; PIP2, phosphatidylinositol 4, 5-bisphosphate; IP3, inositol 1,4,5-trisphosphate.   

 
 

  The current model for the canonical Wnt signaling  
According to the present model, in the absence of the 

Wnt ligands, a destruction protein complex, including 

APC, Axin, GSK-3β, CK1, and β-TrCP, maintains 

cellular β-Catenin protein at physiological levels
[5,6,23]

. 

This behavior is due to the phosphorylation of β-

Catenin by CK1 and GSK-3β at serine and threonine 

residues located within the amino terminal of the 

protein (encoded by exon 3 of CTNNB1, the β-Catenin-

encoding gene). This phosphorylation leads to  

ubiquitination and proteasome degradation of β-

Catenin. Upon the interaction of the Wnt proteins to 

their receptors (Frizzled and LRP5/6), the destruction 

complex dissociates (at least partially), and a new 

protein complex forms at the cell membrane (called 

signalosome), which contains some of the components 

of the destruction complex
[23]

. Formation of 

signalosome results in a decrease in β-Catenin 

phosphorylation, followed by the cellular accumulation 

of this protein (Fig. 2).  
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A brief discussion of some Wnt/β-Catenin target 

genes 
Wnt/β-Catenin target gene promoters contain WREs 

as a part of their regulatory sequences
[24]

. WREs are 

the binding sites for the β-Catenin/TCF complex
[24]

. 

Activation of Wnt/β-Catenin signaling either increases 

or decreases the expression of some cellular genes. The 

number of genes regulated by the Wnt/β-Catenin 

signaling is probably cell context-dependent. In normal 

human cells, especially epithelial tissues, the activity of 

Wnt/β-Catenin signaling is extremely low (due to very 

low levels of cytoplasmic β-Catenin), and higher 

activation of this signaling pathway is limited to the 

situations like tissue regeneration and human 

malignancies
[25,26]

. 

 

CCND1 

This gene encodes Cyclin D1, one of the critical 

components of the G1-S transition of cell cycle in all 

animal cells
[27,28]

. Cyclin D1 has been considered as R 

factor
[27]

. The cellular concentration of R factor should 

reach a certain level before the progression of cell 

cycle from G1 phase to S phase. Cyclin D1 mainly 

interacts with the G1-S transition protein kinases, 

CDK4 and CDK6. Activation of these two protein 

kinases is required to progress cell cycle toward the S 

phase
[27,28]

. Deregulation of cell cycle is a feature of 

nearly all human cancers
[27,28]

. Cancer cells use several 

mechanisms to deregulate the cell cycle. Increase in 

CCND1 gene expression and/or protein stabilization is 

among these mechanisms. The mitogenic signals via 

receptor tyrosine kinases together with PI3-

kinase/AKT signaling are the most known pathways to 

enhance gene expression and protein stability of Cyclin 

D1
[29]

. In addition, the gene-encoding Cyclin D1 is a 

target of the Wnt/β-Catenin pathway. Therefore, cancer 

cells with upregulated Wnt/β-Catenin signaling are 

expected to have higher levels of Cyclin D1 protein 

and therefore higher cell proliferation rate. 

 

c-MYC 

This gene is one of the most potent cellular proto-

oncogenes and encodes c-Myc protein. c-Myc is a 

transcription factor that binds to DNA (via helix-loop-

helix and leucine zipper domains) and regulates the 

expression of the genes involved in many cellular 

functions, including cell proliferation and DNA 

replication
[30-33]

. c-Myc can heterodimerize with other 

transcription factors like Max to increase the number of 

the target genes. It is estimated that c-Myc is involved 

in the expression of more than 15% of cellular genes 

supporting the role of this protein in many cellular 

functions
[33]

. c-Myc binds to the enhancer box 

sequences on DNA, and by recruiting important 

proteins like histone acetyltransferases, it regulates 

gene expression
[32,33]

. c-Myc activates cell growth by 

upregulating the expression of ribosomal RNAs and 

proteins and also by decreasing the expression of the 

genes encoding pro-apoptotic Bcl-2 proteins
[30,32]

.  

c-Myc is also required for cancer cell metabolism and 

stemness of cancer stem cells
[30,32]

. Increase in c-Myc 

expression and activity has been observed in a wide 

range of human cancers
[30-33]

. In addition to the Wnt/β-

Catenin pathway, some other mitogenic signals (like 

epidermal growth factor receptor and sonic hedgehog 

pathways) can enhance the c-Myc expression. In 

normal cells, the mRNA and protein levels of c-Myc 

are low, and this is due to the fact that c-Myc mRNA 

and protein are unstable
[30]

. Since the overexpression of 

c-Myc in normal cells can lead to oncogenic shock and 

induce apoptosis, cancer cells should probably obtain 

new features to tolerate higher levels of c-Myc 

activation. 

 

c-JUN 

The product of this gene is also a transcription 

factor
[34]

. c-Jun can heterodimerize with c-Fos to form 

a new transcription factor called AP1
[34,35]

. The 

expression and function of c-Jun are dependent on 

several signaling pathways mediated by some growth 

factors, pre-inflammatory signals, oxidative stress, and 

ultraviolet radiation
[35]

. The promoter region of c-JUN 

is responsive to the combinatorial transcription factor, 

AP1, which can be considered as a positive feedback 

for c-Jun expression
[35]

. One of the target genes of c-

Jun is CCND1, which encodes Cyclin-D1
[34]

. Since 

CCND1 is also a direct target of the Wnt/β-Catenin 

pathway, it can be concluded that Wnt/β-Catenin 

signaling has a powerful cell proliferation effect. A 

target gene that its expression is negatively affected by 

AP1 is TP53, the gene encoding the tumor suppressor, 

p53
[36]

. p53 is a known mediator of cell cycle arrest 

and apoptosis. Therefore, it appears that c-Jun not only 

induces cell proliferation but also can make cells 

resistant to cell cycle arrest and apoptosis by inhibiting 

the expression of p53. These features of c-Jun may 

have a significant role in tumor growth and tumor 

resistance to chemotherapy. 

 

MMP7 

This gene encodes MMP7, which belongs to the 

family of matrix metalloproteinases and is involved in 

the degradation of the extracellular matrix. In normal 

situations, these proteins have an important role in 

embryogenesis, wound healing, and tissue 

regeneration
[37]

. However, deregulated expression 

and/or function of MMPs (including MMP7) can lead 

to angiogenesis, cancer invasion, and metastasis
[37]
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MMP7 is normally translated as a pro-enzyme  

(28 kDa), which is then processed to the active  

form of MMP7 (19 kDa). It has been demonstrated that  

the overexpression of MMP7 enhances cancer  

invasion and metastasis
[37-39]

. Immunohistochemistry 

experiments have also indicated that cancer cells 

compared to the corresponding normal cells may 

express higher levels of MMP7 protein
[40]

. 

 

VEGF 

This gene encodes VEGF protein, which was 

originally identified as a hormone for growth and 

proliferation of endothelial cells
[41]

. Upregulation of 

this protein is very important for tumor growth and 

angiogenesis
[42]

. During animal development, VEGF 

stimulates embryonic vascular formation, and 

postnatally, this protein acts in neo-vascularization 

upon injuries or blockade of veins or capillaries
[41,42]

. It 

has also been demonstrated that VEGF enhances 

vascular permeability
[41]

. The function of this protein in 

cancer growth has drawn attention since without this 

protein the tumors cannot grow beyond a certain size. 

It has been shown that about 50% of colorectal cancer 

tissues express higher levels of VEGF protein 

compared to the corresponding normal cells
[43]

. 

Moreover, the expression of VEGF in colorectal tumor 

indicates poor prognosis and poor response to the 

therapy
[43]

. VEGF receptor belongs to the family of 

receptor tyrosine kinases, which are known as potent 

transducers of mitogenic signals. One of the inducers 

of VEGF expression and release is hypoxia
[42]

. 

Hypoxia increases the expression of hypoxia-inducible 

factor, a transcription factor whose activity can lead  

to VEGF release and its binding to the receptor
[42]

. The 

above information reveals that VEGF expression by 

Wnt/β-Catenin signaling can have an important role  

in tumor growth, tumor angiogenesis, and tumor 

invasion.  

 

FGF18 

This gene encodes FGF18 protein, which is an 

important cellular mitogenic growth factor
[44]

. FGF18 

is involved in animal development and tissue 

regeneration by regulating different cellular functions, 

including growth, proliferation, and survival
[44]

. When 

deregulated, FGF18 promotes cancer growth, 

angiogenesis, and metastasis
[45]

. The receptor for 

FGF18 is FGFR3, a member of the family of mitogenic 

receptor tyrosine kinases, which functions through Ras 

and Map kinases
[44]

. It is worth mentioning that FGF 

family of growth factors include at least 22 members 

(FGF1-FGF22), which some of them are preferentially 

expressed during embryonic development
[46]

. One of 

the known functions of FGF18 is growth and 

development of cartilage and bone during 

embryogenesis and post-embryonic development
[44,45]

. 

In mice, overexpression of FGF18 leads to cartilage 

thickness
[47]

. FGF18 null mice die very early after 

birth, probably due to the deformation of the ribs
[47]

. 

Although FGF18 is a potent mitogen for osteoblasts 

and chondrocytes, this protein can also enhance the 

growth and proliferation of other cells, including 

neurons, intestine, and liver cells
[46]

. It has been 

reported that there is a positive association between 

FGF18 expression and development of some human 

cancers, including colon cancer
[45]

. Interestingly, it has 

been observed that in slow proliferating colon cancer 

cell lines (like Caco-2 and LT-97), addition  

of FGF18 to the cell culture can elevate cell 

proliferation
[45]

. 

 

c-MET 

The product of this gene, c-Met, which has also been 

called “HGFR” is a receptor tyrosine kinase
[48]

. c-Met 

is a key player in animal development, and therefore, 

homozygous deletion of c-Met gene, similar to the 

gene encoding the c-Met ligand (HGF), is 

embryonically lethal in mice
[48,49]

. HGF is mainly 

expressed by mesenchymal cells, while c-Met (HGFR) 

is normally expressed by epithelial cells, which 

signifies that epithelial cells expressing c-Met can 

respond to paracrine signals from mesenchymal cells 

expressing HGF
[49]

. As mentioned above, c-Met is a 

member of the RTK family, and therefore it can 

potentially be involved in several biological activities. 

It has been displayed that upon damage to tissues like 

liver, kidney, and heart, the expression of c-Met in 

these tissues increases, suggesting that this protein has 

a positive role in tissue repair
[48,49]

. In addition to the 

known components of the RTK signaling, some other 

important signaling molecules such as the intracellular 

tyrosine kinase, Src, the regulatory subunit of PI3-

Kiase (p85 protein), Phosphlipase C, Ship1, and 

STAT3 can be activated by c-Met
[48]

. Also, the c-Met-

mediated signaling can activate gene expression that 

some of the target genes encode matrix 

metalloproteinases
[50]

. Regarding the interaction  

with human cancers, c-Met has been considered  

a potent oncogene involved in cancer cell growth, 

invasion, and metastasis
[48,49]

. Induction of EMT is one 

of the mechanisms of c-Met-mediated cancer cell 

invasion
[49,50]

. Genetic mutations and chromosomal 

rearrangements can lead to the upregulation of c-Met in 

human cancers
[48,50]

. The genes encoding c-Met and its 

ligand (HGF) are located on chromosome 7, and 

trisomy of this chromosome has been observed in most 

cases of capillary renal carcinoma
[51]

. In addition, 

duplication of c-MET gene has been reported in 
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familial forms of renal carcinoma. Studies have also 

indicated that the expression of c-Met and its ligand is 

higher in colorectal cancer tissues than that of these  

proteins in the corresponding normal mucosa, and  

this increase is normally accompanied with  

cancer invasion, metastasis, and patient poor 

prognosis
[51,52]

. In fact, c-Met has been considered as a 

potential clinical target for the treatment of colorectal 

cancer
[52]

.  

 
TERT 

TERT is an important Wnt/β-Catenin target gene and 

encodes the enzyme Telomerase, a significant marker 

of proliferating cells, including stem cells
[53]

. Many 

non-proliferative somatic cells in adults do not express 

TERT and may remain Telomerase-negative until the 

end of their lifespan
[53,54]

. Although Telomerase is 

primarily known as an enzyme adding telomere repeats 

to the chromosome ends during chromosome 

replication, further studies have shown that Telomerase 

is a multi-functional protein and positively regulates 

cell proliferation
[54,55]

. Telomerase also supports 

chromosomal stability in cells having short 

telomeres
[53,54]

. Many carcinomas do not express 

Telomerase at early stages, likely because these tumor 

cells need genomic instability to progress
[55]

. However, 

many of these cancers re-express Telomerase at late 

stages, the time when further chromosomal instability 

may lead to cancer cell death
[53,55]

. Telomerase has 

been considered as a therapeutic target for the late 

stages of carcinogenesis or for the tumors originating 

from Telomerase-positive cells like leukemia and 

lymphoma
[55]

. 

 
A conclusion on the expression of the discussed 

genes  
It definitely cannot be expected that β-Catenin has 

ability to regulate all its target genes in a specific colon 

cancer patient or in a cell line in which β-Catenin has 

been overexpressed. The correct number of genes, 

which are regulated by the Wnt/β-Catenin pathway, is 

most likely dependent on the cell context
[56]

. 

Activation of the canonical Wnt signaling (or the 

Wnt/β-Catenin pathway) occurs in more than 85% of 

colon cancer cases in which this signaling pathway is 

involved in tumor formation and progression
[5-8]

. The 

transcriptional activities of β-Catenin protein are a 

hallmark of deregulation of this signaling pathway in 

colon cancer and some other malignancies. We have 

learned that each one of the target genes (some of them 

mentioned above) may produce a multi-functional 

protein, which can greatly influence cellular activities, 

including growth, proliferation, survival, polarity, 

cytoskeleton organization, and movement. Therefore, 

we can easily conclude that the deregulation of the 

Wnt/β-Catenin signaling in cells (like colon epithelial 

cells) can potentially lead to the formation and 

progression of neoplastic cells. It is worth mentioning 

that the transcription of some of the target genes 

decreases upon the activation of the Wnt/β-Catenin 

signaling. A good example is CDH1, which encodes E-

Cadherin, a true marker of epithelial cells
[25,26,57]

. 

Decrease in E-Cadherin expression can induce EMT, 

which may activate a Wnt-independent β-Catenin 

signaling
[25,26,57]

. Another mechanism to reduce the 

expression of CDH1 by Wnt/β-Catenin is the activation 

of a gene called SNAI1, encoding a transcription factor 

(Snail), which negatively regulates the transcription of 

CDH1
[25,58]

. 

 

β-Catenin and human cancers 
Before discussing human cancers, which are 

dependent on β-Catenin deregulation, it is interesting 

to know that different tumors may use various 

mechanisms to upregulate β-Catenin signaling. We 

know that β-Catenin cellular accumulation and its 

transcriptional activities are not due to only activation 

of the canonical Wnt pathway. The mitogenic and 

surviving signals through RTKs and PI3-Kinas/AKT 

can also upregulate β-Catenin activity via 

phosphorylation (at serine 9) and inactivation of GSK-

3β
[15,59]

 and/or the induction of EMT. We and others 

have also suggested that the activation of some classes 

of heterotrimeric G-proteins (like Gq signaling) can 

cause cellular accumulation of β-Catenin and its 

transcriptional activities
[15,16,18,21]

. An important 

question is whether the β-Catenin proteins activated by 

these signaling pathways functionally behave similarly, 

or there are different species of this protein that each 

tumor is dependent on one or two of them. It is also 

important to consider that some tumors may use two or 

more components of Wnt signaling pathway to perhaps 

amplify β-Catenin activation. An example is the colon 

cancer cell line, HCT-116, which carries both β-

Catenin-activating gene mutations together with 

epigenetic silencing of the sFRP encoding gene
[60,61]

. 

Based on the above information, it appears that β-

Catenin deregulation occurs in many human cancers
[5-

9]
, and the examples below are just representatives of 

those tumors. 

 

Colon cancer 

Colon cancer is perhaps the best example of the 

interaction between Wnt/β-Catenin signaling and 

human cancers and has very well been investigated 

over the decades
[5-8]

. All familial adenomatous 

polyposis patients and more than 85% of the sporadic 

cases of colon cancer carry genetic mutations in the 
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APC gene, resulting in the complete or partial 

inactivation of the APC protein
[62,63]

. During Wnt/β-

Catenin signal transduction, APC protein functions as a 

regulator and a large scaffold protein to maintain β-

Catenin protein levels at physiological concentrations. 

Upon the inactivation of APC in colon epithelial cells, 

β-Catenin accumulates in the cell. This cellular 

accumulation of β-Catenin may result in its nuclear 

translocation and transcriptional activity of this protein, 

which appears to be the main cause of colon cancer 

initiation
[62,63]

. Interestingly, the remaining cases 

(nearly 15%) of colon cancer, which lack APC 

mutations, carry genetic or epigenetic changes in some 

other components of the Wnt/β-Catenin signaling 

pathway (like the genes encoding Axin, β-Catenin, and 

sFRP)
[60-63]

. Even in hereditary non-polyposis 

colorectal cancer patients, which initially carry genetic 

mutations in the genes encoding the proteins of the 

mismatch DNA repair system, genetic mutations (point 

mutations) in the β-Catenin-encoding gene (CTNNB1) 

is very common at later stages
[64]

. β-Catenin mutations 

normally affect the N-terminal of the protein replacing 

the GSK-3β or Casein kinase phosphorylation sites
[64]

. 

As mentioned above, deregulation of the Wnt/β-

Catenin pathway is an early event in colon cancer. 

Clinically, this is a very important issue because 

targeting the biological pathways involved in the 

initiation of tumorigenesis can potentially block tumor 

formation.  
 

Melanoma 

Melanocytes developmentally originate from the 

migration of neural crest cells and the Wnt signaling 

plays an essential role in the determination of 

melanocyte cell fate
[65,66]

. Melanoma is a type of skin 

tumor that originates from the basal layer of the skin 

and from the pigment producing cells, melanocytes. 

Compared to other types of skin tumors, melanoma is a 

more malignant one. The interaction between this 

tumor and Wnt/β-Catenin signaling has been known 

for years
[65,66]

. It has been reported that almost all 

forms of benign melanoma have nuclear β-

Catenin
[65,66]

. Therefore, the Wnt/β-Catenin pathway 

appears to support proliferation and escape from 

senescence of early melanoma tumor cells
[65]

. It has 

also been shown that the advanced melanoma cells lack 

β-Catenin in the nucleus
[65,66]

. These observations are 

very interesting as they suggest a very complex role of 

Wnt/β-Catenin pathway in this type of malignancy. 

Probably cancer stage and tumor microenvironment are 

important factors when studying the interaction 

between Wnt/β-Catenin signaling and melanoma 

tumorigenesis. As mentioned before, the signals 

through Wnt and Frizzled proteins have generally been 

divided into canonical (the Wnt/β-Catenin) and non-

canonical pathways. Although the role of canonical 

Wnt signaling was originally highlighted in human 

cancers (perhaps due to the intensive investigation of 

colorectal cancers), more recent results indicate that the 

non-canonical Wnt pathways are also involved in 

human carcinogenesis
[5-7]

. Based on the current 

knowledge about human carcinomas (the tumors 

originating from epithelial tissues), in the case of the 

tumors dependent on Wnt signaling, it appears that the 

canonical Wnt pathway supports early tumorigenesis, 

while the non-canonical Wnt pathways help tumor 

invasion and metastasis
[5-7]

. In melanoma, the genetic 

mutations of the components of the canonical Wnt 

pathway (including β-Catenin itself) are rare, but the 

non-canonical Wnt pathway (mediated by Wnt-5a) 

helps tumor metastasis
[65]

. The increased intracellular 

levels of β-Catenin during early stages of melanoma is 

likely due to the activation of other signaling 

pathways
[65]

. The experiments performed in mice have 

suggested that β-Catenin-mediated melanoma 

formation is dependent on the activation of the proto-

oncogene, N-Ras
[66]

. It has been speculated that the 

downregulation of β-Catenin signaling, which occurs 

during melanoma aggression, is possibly due to the 

activation of non-canonical Wnt pathways
[65-67]

. One 

proposed mechanism is that interaction of Wnt-5a with 

Frizzled 2/5 and the coreceptor, ROR2 (a receptor 

tyrosine kinase) activates phosphatidylinositol 

signaling, which leads to the release of calcium from 

intracellular stores and activation of protein kinase 

C
[13,65]

. The outcome of the released calcium could 

include the activation of calpain-mediated proteolysis 

of filamin, upregulation of the transcription factor, 

Snail, and upregulation of the cytoskeleton protein, 

Vimentin, which collectively enhance cell motility and 

transition of tumor cells to a mesenchymal 

phenotype
[67,68]

. It has also been revealed that Wnt-5a 

activation leads to the proteolysis of β-Catenin via a 

mechanism that is independent of GSK-3β and is 

through the activation of the ubiquitin ligase, 

SIAH2
[65]

. These results all show that the 

downregulation of β-Catenin occurs during melanoma 

tumor invasion. 
 

Hepatocellular carcinoma 
HCC is one of the leading cause of death from cancer 

in many populations, and studies have exhibited that 

the aberrant regulation of Wnt signaling (both 

canonical and non-canonical) is involved in 
hepatocellular carcinogenesis

[69-73]
. HCC (like many 

other carcinomas) is a multi-stage and complex disease 

that requires the accumulation of several genetic and 

epigenetic changes to develop. Deregulation of the 
canonical Wnt signaling (and therefore the 

upregulation of β-Catenin) in HCC is very common 
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and occurs in nearly 95% of the cases
[70,71]

. It appears 

that a relatively similar mechanism to what discussed 
for melanoma applies for HCC as well, that the 

canonical Wnt signaling (the Wnt/β-Catenin pathway) 

is involved in the initiation of hepatocellular 

tumorigenesis, while the non-canonical Wnt pathway 

helps tumor advancement and invasion
[71]

. Therefore, a 
combination of Wnt signaling pathways can support 

the proliferation, survival, migration, and invasiveness 

of hepatocytes
[69-72]

. The molecular events leading  

to the activation of β-Catenin in HCC include  
CTNNB1 and AXIN gene mutations, WNT3/FZD7 

overexpression, and sFRP1/5 repression
[71]

. APC gene 

mutations in HCC are rare and include only 1% to 3% 

of cases
[71]

. It has been estimated that between 40% to 

70% of HCC cases have nuclear β-Catenin 
accumulation. It is interesting to mention that β-

Catenin gene (CTNNB1) mutations normally occur late 

in HCC tumorigenesis, but the cellular accumulation of 

β-Catenin is an early event
[71]

. This means that the 
early cellular accumulation of β-Catenin in HCC is 

probably not due to the mutations in the β-Catenin-

encoding gene. The above information also suggests 

that the late β-Catenin mutations probably have an 

extra role in HCC tumorigenesis. A balanced β-Catenin 
signaling is important for liver tissue homeostasis, and 

therefore the deregulation of Wnt/β-Catenin pathway 

probably has an important role in the initiation of 

HCC
[69-72]

. However, studies in mice have shown that 
β-Catenin upregulation per se is not sufficient to 

initiate hepatoma, and other pathways like H-Ras 

signaling are also required for the initiation of the 

tumor
[71]

. Also, by using conditional knockout 

experiments, it has been reported that diethyl-
nitrosamine-induced HCC in mice can be enhanced 

severalfold either in the absence of wild type β-Catenin 

or in the presence of a mutant β-Catenin
[69,71]

. These 

results have made it difficult to conclude that Wnt/β-
Catenin signaling is involved in the initiation of HCC 

tumorigenesis, but more recent results have indicated 

that both types of Wnt signaling pathway (canonical 

and non-canonical) help HCC aggressiveness and 

resistance to therapy and also provide an appropriate 
microenvironment to support tumor growth and 

survival
[69,70,73]

. 

 
Pancreatic cancer 

PDAC is among the deadliest human cancers with an 

overall survival rate of about 8%
[74-77]

. The metastasis 

is relatively common and more than half of the patients 

have already distant metastases at the time of 

diagnosis
[74]

. Activating mutations in the KRAS gene 

have been detected in more than 95% of the cases
[74,75]

. 

Also, inactivation of the tumor suppressors like p53, 

INK4a, and DPC4 is documented in pancreatic cancer 

progression and development
[74]

. In addition, 

deregulation of signaling pathways like those mediated 

by Hedgehog, Notch, and Wnt may occur in pancreatic 

cancer, which has an important role in the progression 

of the tumor
[75]

. Nuclear accumulation of β-Catenin has 

been detected in moderate to poorly differentiated 

PDAC, and it has been noted that nuclear β-Catenin 

accompanies with poor prognosis
[74]

. Meanwhile, the 

genetic mutations of downstream components of the 

canonical Wnt pathway are not very common in 

pancreatic cancer
[74,76,77]

. This means that probably 

molecular changes affecting the upstream levels of 

Wnt signaling are acting in β-Catenin upregulation. In 

fact, overexpression of Wnts and Frizzled receptors has 

been reported in PDAC
[75]

. It has been shown that the 

upregulation of β-Catenin during mice development 

leads to pancreatoblastoma, while upregulation of this 

protein after birth results in PDAC
[74,75]

. Interestingly, 

several β-Catenin target genes (including Gli2, Id2, 

Vegfc, and Cyr61) have been linked to the 

tumorigenesis of PDAC. In this sense, the role of 

CYR61 has been highlighted in malignant potential of 

PDAC
[74]

. Higher expression of CYR61 has been 

detected in about 85% of PDAC cases, and expression 

of this gene has been associated with the later stages of 

the disease
[74]

. It has been suggested that CYR61 binds 

to LRP6 and activates Wnt/β-Catenin pathway using a 

positive feedback loop
[74]

. Although the role of non-

canonical Wnt pathways in PDAC development is 

unclear, studies have revealed that Wnt-5a-mediated 

signaling is involved in the transformation of 

pancreatic cancer cells
[74]

. 
 

Clinical targeting of the Wnt/β-Catenin signaling  
Due to the interaction between Wnt/β-Catenin 

signaling and human carcinogenesis, this signaling 

pathway has been considered as a potential clinical 

target for the prevention and treatment of a large 

number of human cancers, especially those dependent 

on Wnt/β-Catenin signaling at early stages (like colon 

cancer). However, targeting such an important 

signaling pathway without clinical side effects seems 

to be difficult. This issue gets more serious when there 

are cross-talks between Wnt/β-Catenin signaling and 

other signaling pathways. After about 40 years of 

intensive research on Wnt signaling
[78]

, there are still 

some unanswered questions about the regulation of this 

signaling pathway. Despite these limitations, several 

compounds have been introduced as candidates to 

downregulate Wnt/β-Catenin signaling in human 

cancers. Although none of these compounds has yet 

been approved for clinical use, some have produced 

promising results in pre-clinical studies. Some of these 

compounds and their specific targets have been briefly 

discussed below. 
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β-Catenin/TCF 
Perhaps the most specific segment of Wnt/β-Catenin 

signaling is the interaction of β-Catenin with TCF/Lef 

family members and the transcriptional activities of 

this protein complex. Although the genes regulated by 

the complex of β-Catenin/TCF may vary based on the 

cell-context, specific targeting of this protein complex 

appears to be promising. Currently, several 

compounds, including PKF115-584, CGP049090, 

iCRT3, iCRT5, iCRT14, PNU-74654, and BC21, 

against β-Catenin/TCF complex are under preclinical 

investigations
[79-82]

. 

 
Tankyrase 1/2 

Several compounds, like XAV939, IWR, and G007-

LK, have been designed to upregulate Axin, an 

inherent component of the Wnt/β-Catenin signaling 

pathway
[6,81,82]

. These compounds are, in fact, the 

inhibitors of the enzyme, Tankyrase. Tankyrase 1/2 is 

involved in ADP-ribosylation of Axin and therefore 

destabilizes this protein via inducing its ubiquitylation 

and degradation
[6,81,82]

. As mentioned above, Axin, as a 

second scaffold protein (after APC), functions as a 

negative regulator of β-Catenin stability. 

 
Porcupine 

Appropriate synthesis and secretion of Wnt proteins 

have crucial roles in the activation of both canonical 

and non-canonical Wnt signaling pathways
[6]

. 

Secretion of Wnt ligands is a very complex process, 

and for most Wnt proteins, glycosylation and lipid 

modification (acylation) are prerequisites for 

appropriate vesicular trafficking and secretion
[5,6]

.
 

Porcupine is a membrane protein with O-

acyltransferase activity and is involved in 

palmitoylation (at a serine residue) and maturation of 

most Wnt proteins
[6,83]

.
 
 It has been demonstrated that 

the palmitoylated serine is one of the interacting sites 

of the Wnt proteins to the extracellular cysteine-rich 

domain of Frizzled receptors
[6,83]

. It has also been 

shown that in the absence of Porcupine, the Wnt 

proteins cannot be secreted and are trapped in 

endoplasmic reticulum
[83]

. Based on these data, it can 

be concluded that Porcupine is a potential clinical 

target although it seems likely that the blockade of 

Porcupine affects the secretion of many Wnt proteins 

and produces non-specific and unwanted results. The 

compounds IWP2, LGK974, and C59 are among the 

blockers of Porcupine
[6,82]

. 

 

Other targets 

It is worth mentioning that the above targets are not 

the only ones that have been considered for clinical 

investigations to modulate Wnt/β-Catenin signaling. 

The other targets include DVL, Wnts, and Frizzled 

proteins
[82]

. The compounds like FJ9, NSC668036, and 

3289-8625 have been used for preclinical studies 

against DVL (the human homologue for Drosophila 

Dishevelled proteins)
 [82]

. Based on the knowledge 

about the role of DVL proteins in regulating Wnt 

signaling, it is quite predictable that blocking these 

proteins may have a huge effect on the biological 

activities of many cells (including cancer cells). DVL 

is a critical protein involved in regulating both 

canonical and non-canonical Wnt signaling. DVL is, in 

fact, an upstream component of the Wnt pathways and 

has a very important role in specifying the signals 

through Wnt and Frizzled proteins
[5-7]

. These features 

of DVL proteins make them challenging targets as far 

as the cytotoxicity and drug side effects are concerned. 

A monoclonal antibody (OMP-18R5) has been 

generated that recognizes several Frizzled receptors 

and is currently in phase I clinical trial
[84]

. Application 

of specific monoclonal antibodies against oncogenic 

tyrosine kinase receptors has been proven to be 

successful, and some of such antibodies (like Herceptin 

against Her2/Neu) have been approved for clinical use. 

RTKs are more diverse than Frizzled proteins (58 vs. 

10), and they have potential mitogenic activities. Also, 

overexpression of RTKs has been observed in several 

human cancers
[85]

, while the expression levels of 

Frizzled proteins in human cancers have not been 

extensively studied. Since there are only 10 Frizzled 

proteins encoded by human genome and the 

involvement of these proteins in both canonical and 

non-canonical Wnt pathways, it can be concluded that 

each Frizzled protein may regulate several biological 

activities. Therefore, for clinical purposes, targeting a 

Frizzled receptor with monoclonal antibodies appears 

to be more challenging than that for receptor tyrosine 

kinases.  

 

Conclusions and future directions  
There is no doubt that the canonical Wnt signaling 

(or the Wnt/β-Catenin pathway) is a potential clinical 

target for cancer therapy. However, an important 

question is which segment of this pathway should be 

targeted to produce better and more specific results. 

The final step of a signaling pathway appears to be the 

best choice, which for the canonical Wnt pathway 

includes the β-Catenin-mediated gene transcription. 

However, the transcriptional activities of β-Catenin 

should be cellular context-dependent, and the β-

Catenin/TCF complex may not be the only factor in 

specifying the target genes. Definitely, further 

investigations on molecular details of β-Catenin 

transcriptional complexes are needed to address the 

above question.  
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