Volume 25, Issue 3 (5-2021)                   IBJ 2021, 25(3): 202-212 | Back to browse issues page

PMID: 33486911

XML Print

Background: Levan or fructan, a polysaccharide of fructose, is widely used in various commercial industries. Levan could be produced by many organisms, including plants and bacteria. The cloning of the gene from Bacillus licheniformis, which expressed levansucrase in Escherichia coli host, was carried out successfully. In the present study, we performed the in vitro production of levan and analyzed its potential application as antibacterial and antioxidant agents. Methods: In vitro levan production catalyzed by heterologous-expressed levansucrase Lsbl-bk1 and Lsbl-bk2 was optimized with Box-Wilson design. The antibacterial activity of the produced levan was carried out using agar well diffusion method, while its antioxidant activity was tested by free radical scavenging assays. Results: The optimum conditions for levan production were observed at 36 °C and pH 7 in 12% (w/v) sucrose for levansucrase Lsbl-bk1, while the optimum catalysis of levansucrase Lsbl-bk2 was obtained at 32 oC and pH 8 in the same sucrose concentration. The in vitro synthesized levan showed an antibacterial activity within a concentration range of 10-20% (w/v) against Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa. The same levan was also able to inhibit the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with the antioxidant strength of 75% compared to ascorbic acid inhibition. Conclusion: Our study, therefore, shows that the optimized heterologous expression of levansucrases encoded by Lsbl-bk1 and Lsbl-bk2 could open the way for industrial levan production as an antibacterial and antioxidant agent.

1. Malik A. Molecular cloning and in silico characterization of fructansucrase gene from Weissella confusa MBFCNC-2(1) isolated from local beverage. Asia-Pacific journal of molecular biology and biotechnology 2012; 20(1): 33-42.
2. Tjalsma H, Bolhius A, Jongbloed DH, Bron S, van Dijil JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and molecular biology reviews 2000; 64(3): 515-547. [DOI:10.1128/MMBR.64.3.515-547.2000]
3. Lanigan-Gerdes S, Briceno G, Dooley AN, Faull KF, Lazazzera BA. Identification of residues important for cleavage of the extracellular signal peptide CSF of Bacillus subtilis from its precursor protein. Journal of bacteriology 2008; 190(20): 6668-6675. [DOI:10.1128/JB.00910-08]
4. Simonen M, Palva I. Protein secretion in Bacillus species. Microbiology reviews 1993; 57(1): 109-137. [DOI:10.1128/MR.57.1.109-137.1993]
5. Jakob F, Meißner D, Vogel RF. Comparison of novel GH 68 levansucrases of levan-overproducing Gluconobacter species. Acetic acid bacteria 2012; 1: e2. [DOI:10.4081/aab.2012.e2]
6. Van Hijum SA, Krajl S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiology and molecular biology reviews 2006; 70(1): 157-176. [DOI:10.1128/MMBR.70.1.157-176.2006]
7. Versluys M, Kirtel O, Öner ET, den Ende WV. The fructant syndrome: evolutionary aspects and common themes among plants and microbes. Plant, cell and environment 2018; 41(1): 16-38. [DOI:10.1111/pce.13070]
8. Desvaux M, Candela T, Serror P. Surfaceome and proteosurfaceome in parietal modern bacteria: focus on protein cell-surface display. Frontiers in microbiology 2018; 9: 100. [DOI:10.3389/fmicb.2018.00100]
9. Hernandez L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron MF, Chambert R. Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochemical journal 1995; 309(Pt 1): 113-118. [DOI:10.1042/bj3090113]
10. Wu FC, Chou SZ, Shih IL. Factors affecting the production and molecular weight of levan of Bacillus subtilis natto in batch and fed-batch culture in fermenter. Journal of the Taiwan institute chemical engineers 2013; 44(6): 846-853. [DOI:10.1016/j.jtice.2013.03.009]
11. Seo JW, Song KB, Jang KH, Kim CH, Jung BH, Rhee SK. Molecular cloning of a gene encoding the thermoactive levansucrase from Rahnella aquatilis and its growth phase-dependent expression in Escherichia coli. Journal of biotechnology 2000; 81(1): 63-72. [DOI:10.1016/S0168-1656(00)00281-9]
12. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources : A review of recent research. Carbohydrate polymers 2012; 90(4): 1395-1410. [DOI:10.1016/j.carbpol.2012.07.026]
13. Meyers MA, Chen PY, Lin AY, Seki Y. Biological materials: Structure and mechanical properties. Progress in materials science 2008; 53(1): 1-206. [DOI:10.1016/j.pmatsci.2007.05.002]
14. Joaquim EO, Hayashi AH, Torres LMB, Figueiredo-Ribeiro RCL, Shiomi N, Sousa FS, Lago JHG, Carvalho MAM. Chemical structure and localization of levan, the predominant fructant type in underground systems of Gomphrenamarginata (Amaranthaceae). Frontiers in plant science 2018; 9: 1745. [DOI:10.3389/fpls.2018.01745]
15. Álvaro-benito M, Sainz-Polo MA, González-Pérez D, González B, Plou FJ, Fernández-Lobato M, Sanz-Aparicio J. Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics. Journal of biological chemistry 2012; 287(23): 19674-19686. [DOI:10.1074/jbc.M112.355503]
16. Srikanth R, Reddy CHSSS, Siddartha G, Ramaiah MJ, Uppuluri KB. Review on production, characterization and applications of microbial levan. Carbohydrate Polymers 2015; 120: 102-114. [DOI:10.1016/j.carbpol.2014.12.003]
17. Divya JM, Sugumaran KR. Fermentation parameters and condition affecting levan production and its applications. Journal of chemical and pharmaceutical research 2015; 7(2): 861-865.
18. Szwengiel A, Wiesner M. Effect of metal ions on levan synthesis ef fi ciency and its parameters by levansucrase from Bacillus subtilis. International journal of biological macromolecules 2019; 128: 237-243. [DOI:10.1016/j.ijbiomac.2019.01.155]
19. Öner ET, Hernández L, Combie J. Review of levan polysaccharide: from a century experiences to future prospects. Biotecnology advances 2016; 34(5): 827-844. [DOI:10.1016/j.biotechadv.2016.05.002]
20. Ritsema T, Smeekens S. Furctans: beneficial for plants and human. Current opinion in plant biology 2003; 6(3): 223-230. [DOI:10.1016/S1369-5266(03)00034-7]
21. Barone JR, Medynets M. Thermally processed levan polymers. Carbohydrate polymers 2007; 69(3): 554-561. [DOI:10.1016/j.carbpol.2007.01.017]
22. Arvidson SA, Rinehart BT, Maria FG. Concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydr Polym 2006; 65: 144-149. [DOI:10.1016/j.carbpol.2005.12.039]
23. Velázquez-Hernández ML, Cha MP. Microbial fructosyltransferases and the role of fructans. Journal of applied microbiology 2009; 106: 1763-1778. [DOI:10.1111/j.1365-2672.2008.04120.x]
24. Belghith KS, Dahech I, Belghith H, Mejdoub H. Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. International journal of biological macromolecules 2012; 50(2): 451-458. [DOI:10.1016/j.ijbiomac.2011.12.033]
25. Maiorano AE, Piccolo RM, da Silva ES, de Andrade Rodrigues MF. Microbial production of fructosyltranferases for synthesis of prebiotics. Biotechnology letters 2008; 30(11): 1867-1877. [DOI:10.1007/s10529-008-9793-3]
26. Yoo SH, Yoon EJ, Cha J, Lee HG. Antitumor activity of levan polysaccharides from selected microorganisms. International journal of biological macromolecules 2004; 34(1): 37-41. [DOI:10.1016/j.ijbiomac.2004.01.002]
27. Liu J, Luo J, Ye H, Zeng X. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food and chemical toxicology 2012; 50(3-4): 762-772. [DOI:10.1016/j.fct.2011.11.016]
28. Permatasari NU, Ratnaningsih E, Hertadi R. Molecular cloning and expression of levansucrase gene from Bacillus licheniformis BK1 isolated from Bledug Kuwu Mud Crater. EurAsian journal Bioscience 2019; 13: 223-230.
29. Permatasari NU, Ratnaningsih E, Hertadi R. The use of response surface method in optimization of levan production by heterologous expressed levansucrase from halophilic bacteria Bacillus licheniformis BK2. IOP Conference series: earth and environmental science 2018; 209(1): 012015. [DOI:10.1088/1755-1315/209/1/012015]
30. Lu L, Fu F, Zhao R, Jin L, He C, Xu L, Xiao M. A recombinant levansucrase from Bacillus licheniformis 8-37-0-1 catalyzes versatile transfructosylation reactions. Process biochemistry 2014; 49(9): 1503-1510. [DOI:10.1016/j.procbio.2014.05.012]
31. Xiao-Kui M, Qinqin R, Hong Z, Weidong Q. Developing a high-throughput microassay for large samples of fungal polysaccharides. Analytical methods 2013; 5(17): 4310. [DOI:10.1039/c3ay40405f]
32. Zhang W, Zhang X, Cai L, Chen R, Zhang Q, Wang X. Determination of levan from Bacillus licheniformis by ultraviolet spectrophotometry. Tropical journal of pharmaceutical research 2015; 14(4): 679-685. [DOI:10.4314/tjpr.v14i4.17]
33. Molyneux P. The use of the stable free radical diphenylpicryhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin journal of science and technology 2004; 26(2): 211-219.
34. Noipa T, Srijaranai S, Tuntulani T, Ngeontae W. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food research international 2011; 44(3): 798-806. [DOI:10.1016/j.foodres.2011.01.034]
35. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis 2016; 6(2): 71-79. [DOI:10.1016/j.jpha.2015.11.005]
36. Zhang Y, Wu Y, Zheng W, Han X, Jiang Y, Hu P, Tang Z, Shi L. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. Journal of functional foods 2017; 38(Part A): 273-279. [DOI:10.1016/j.jff.2017.09.047]
37. Spanò A, Gugliandolo C, Lentini V, Teresa L, Maugeri, Anzelmo G, Poli A, Nicolaus B. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea island (Italy). Current microbiology 2013; 67(1): 21-29. [DOI:10.1007/s00284-013-0327-4]
38. Ahmed KBA, Kalla D, Uppuluri KB, Anbazhagan V. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydrate polymers 2014; 112: 539-545. [DOI:10.1016/j.carbpol.2014.06.033]
39. Srikanth R, Siddartha G, Sundhar Reddy CH, Harish BS, Janaki Ramaiah M, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate polymers 2015; 123(5): 8-16. [DOI:10.1016/j.carbpol.2014.12.079]
40. Liu Q, Yu S, Zhang T, Jiang B, Mu W. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydrates polymers 2017; 157: 1732-1740. [DOI:10.1016/j.carbpol.2016.11.057]
41. Reyes-Ortega F. In: Aguilar MR, Roman JS, editors. Smart Polymers and Their Applications: ph-Responsive Polymers: Properties, Synthesis and Applications. UK: Woodhead Publishing; 2014. P. 45-92. [DOI:10.1533/9780857097026.1.45]
42. Cavalcanti OA, Petenuci B, Bedin AC, Pineda EAG, Hechenleitner AAW. Characterisation of ethylcellulose films containing natural polysaccharides by thermal analysis and FTIR spectroscopy. Acta Farmacéutica Bonaerense 2004; 23(1): 53-57.
43. Poli A, Kazak H, Gürleyendağ B, Tommonaro G, Pieretti G, ToksoyÖner E, Nicolaus B. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydrate polymers 2009; 78(4): 651-657. [DOI:10.1016/j.carbpol.2009.05.031]
44. Benattouche Z, Bouhadi D, Raho GB. Antioxidant and antibacterial of exopolysaccharides. International journal of food studies 2018; 7(2): 30-37. [DOI:10.7455/ijfs.v7i2.459]
45. Zhang Z, Jin J, Shi L. Antioxidant activity of the derivatives of polysaccharide extract from a Chinese medical herb (Ramulus mori). Food science and technology research 2008; 14(2): 160-168. [DOI:10.3136/fstr.14.160]
46. Li XL, Thakur K, Zhang YY, Tu XF, Zhang YS, Zhu DY, Zhang JG, Wei ZJ. Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg. International journal of biological macromolecules 2018; 116: 664-675. [DOI:10.1016/j.ijbiomac.2018.05.082]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.