Volume 24, Issue 4 (7-2020)                   IBJ 2020, 24(4): 220-228 | Back to browse issues page

PMID: 32306720


XML Print


Abstract:  
Background: The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stress and inflammation in an AD model of rats. Methods: In this study, 50 rats were allocated to five groups, namely control, sham, and AD groups with Aβ1-40 intra-hippocampal injection, as well as AD + rivastigmine and  AD + probiotics groups with Aβ1-40 intra-hippocampal injection and 2 ml (1010 CFU) of probiotics (Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium infantis) orally once a day for 10 weeks. MWM was used to assess memory and learning. To detect Aβ plaque, Congo red staining was used. Oxidative stress was monitored by measuring the MDA level and SOD activity, and to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA method was employed. Results: Spatial memory improved significantly in treatment group as measured by MWM. Probiotics administration reduced Aβ plaques in AD rats. MDA decreased and SOD increased in the treatment group. Besides, probiotics reduced IL-1β and TNF-α as inflammation markers in the AD model of rats. Conclusion: Our data revealed that probiotics are helpful in attenuating inflammation and oxidative stress in AD.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68(2): 270-281. [DOI:10.1016/j.neuron.2010.10.013]
2. Citron M. Alzheimer's disease: strategies for disease modification. Nature reviews drug discovery 2010; 9(5): 387-398. [DOI:10.1038/nrd2896]
3. Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochimica et biophysica acta 2014; 1842(8): 1248-1257. [DOI:10.1016/j.bbadis.2013.09.015]
4. Mehrabadi S, Motevaseli E, Sadr SS, Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer's disease rats. Behavioural brain research 2020; 379: 112362. [DOI:10.1016/j.bbr.2019.112362]
5. Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 2006; 25(51): 6731-6748. [DOI:10.1038/sj.onc.1209936]
6. Chapple I. Reactive oxygen species and antioxidants in inflammatory diseases. Journal of clinical periodontology 1997; 24(5): 287-296. [DOI:10.1111/j.1600-051X.1997.tb00760.x]
7. Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao Y, Lukiw WJ. Pathogenic microbes, the microbiome, and Alzheimer's disease (AD). Frontiers in aging neuroscience 2014; 6: 127.
8. Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clinical interventions in aging 2018; 13: 1497-1511. [DOI:10.2147/CIA.S139163]
9. Mehrabadi S. Interaction between gut microbiota dysbiosis and multiple sclerosis. International journal of medical investigation 2019; 8(3): 21-28.
10. Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson's disease. World journal of gastroenterology 2015; 21(37): 10609-10620. [DOI:10.3748/wjg.v21.i37.10609]
11. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential. In: Lyte M., Cryan J, editors. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology. New York: Springer; 2014. P. 373-403. [DOI:10.1007/978-1-4939-0897-4_17]
12. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155(7): 1451-1463. [DOI:10.1016/j.cell.2013.11.024]
13. Nimgampalle M, Kuna Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced albino rats. Journal of clinical and diagnostic research 2017; 11(8): KC01-KC05. [DOI:10.7860/JCDR/2017/26106.10428]
14. Cowan CSM, Hoban AE, Ventura‐Silva AP, Dinan TG, Clarke G, Cryan JF. Gutsy moves: the amygdala as a critical node in microbiota to brain signaling. Bioessays 2018; 40(1): doi: 10.1002/bies. [DOI:10.1002/bies.201700172]
15. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the national academy of sciences USA 2011; 108(38): 16050-16055. [DOI:10.1073/pnas.1102999108]
16. Hestad KA, Engedal K, Whist JE, Farup PG. The relationships among tryptophan, kynurenine, indoleamine 2,3-dioxygenase, depression, and neuropsychological performance. Frontiers in psychology 2017; 8(1561). doi: 10.3389/fpsyg.2017. 01561. [DOI:10.3389/fpsyg.2017.01561]
17. Köhler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt KL, Carvalho AF. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer's disease. Current pharmaceutical design 2016; 22(40): 6152-6166. [DOI:10.2174/1381612822666160907093807]
18. Luckow T, Sheehan V, Fitzgerald G, Delahunty C. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 47(3): 315-323. [DOI:10.1016/j.appet.2006.04.006]
19. Lukiw WJ, Bazan NG. Survival signalling in Alzheimer's disease. Biochemical society transactions 2006; 34(6): 1277-1282. [DOI:10.1042/BST0341277]
20. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. Journal of the neurological sciences 2017; 376: 242-254. [DOI:10.1016/j.jns.2017.03.031]
21. Quigley EM. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological research 2010; 61(3): 213-218. [DOI:10.1016/j.phrs.2010.01.004]
22. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PloS one 2012; 7(8): e42529. [DOI:10.1371/journal.pone.0042529]
23. Mallikarjuna N, Praveen K, Yellamma K. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer's disease-induced rat brain. Bioimpacts 2016; 6(4): 203-209. [DOI:10.15171/bi.2016.27]
24. Mehrabadi S, Karimiyan SM. Morphine Tolerance Effects on Neurotransmitters and Related Receptors: Definition, Overview and Update. Journal of pharmaceutical research international 2018; 23(6): 1-11. [DOI:10.9734/JPRI/2018/41936]
25. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition: Elsevier; 2006.
26. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature protocols 2006; 1(2): 848-858. [DOI:10.1038/nprot.2006.116]
27. Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T. Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neuroscience letters 2009; 453(1): 41-44. [DOI:10.1016/j.neulet.2009.01.075]
28. Przedborski S, Jackson‐Lewis V, Kostic V, Carlson E, Epstein C, Cadet J. Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc‐ superoxide dismutase transgenic mice. Journal of neurochemistry 1992; 58(5): 1760-1767. [DOI:10.1111/j.1471-4159.1992.tb10051.x]
29. Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance β‐amyloid peptide‐induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. Journal of neurochemistry 2002; 83(4): 973-983. [DOI:10.1046/j.1471-4159.2002.01210.x]
30. Zuo L, Hemmelgarn BT, Chuang CC, Best TM. The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer's disease. Oxidative medicine and cellular longevity 2015; 2015: 604658. [DOI:10.1155/2015/604658]
31. Mehrabadi S, Sadr SS, Hoseini M. Stem cell conditioned medium as a novel treatment for neuroinflamation diseases. International journal of medical investigation 2019; 8(3): 1-12.
32. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine 2018; 54(4): 287-293. [DOI:10.1016/j.ajme.2017.09.001]
33. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint bone spine 2007; 74(4): 324-329. [DOI:10.1016/j.jbspin.2007.02.002]
34. Berry D, Kaplan J, Rahman S. Probiotic compositions containing clostridiales for inhibiting inflammation. Google Patents; 2017.
35. Gao C, Major A, Rendon D, Lugo M, Jackson V, Shi Z, Mori-Akiyama Y, Versalovic J. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio 2015; 6(6): e01358-15. [DOI:10.1128/mBio.01358-15]
36. Koon HW, Su B, Xu C, Mussatto CC, Tran DH-N, Lee EC, Ortiz C, Wang J, Lee JE, Ho S, Chen X, Kelly CP, Pothoulakis C. Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters. American journal of physiology-gastrointestinal and liver physiology 2016; 311(4): G610-G23. [DOI:10.1152/ajpgi.00150.2016]
37. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature reviews immunology 2016; 16(6): 341-352. [DOI:10.1038/nri.2016.42]
38. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535(7610): 65-74. [DOI:10.1038/nature18847]
39. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nature immunology 2011; 12(1): 5-9. [DOI:10.1038/ni0111-5]
40. Calvo-Barreiro L, Eixarch H, Montalban X, Espejo C. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmunity reviews 2018; 17(2): 165-174. [DOI:10.1016/j.autrev.2017.11.019]
41. Secher T, Kassem S, Benamar M, Bernard I, Boury M, Barreau F, Oswald E, Saoudi A. Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Frontiers in immunology 2017; 8: 1096. [DOI:10.3389/fimmu.2017.01096]
42. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neuro-degenerative diseases: deciphering the gut brain axis. Cellular and molecular life sciences 2017; 74(20): 3769-87. [DOI:10.1007/s00018-017-2550-9]
43. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in neurosciences 2013; 36(5): 305-312. [DOI:10.1016/j.tins.2013.01.005]
44. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature neuroscience 2017; 20(2): 14-155. [DOI:10.1038/nn.4476]
45. Caputi V, Giron M. Microbiome-gut-brain axis and toll-like receptors in Parkinson's disease. International journal of molecular sciences 2018; 19(6): doi: 10.3390/ijms19061689. [DOI:10.3390/ijms19061689]
46. Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. American journal of physiology-gastrointestinal and liver physiology 2010; 298(6): G807-G819. [DOI:10.1152/ajpgi.00243.2009]
47. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488(7410): 178-184. [DOI:10.1038/nature11319]
48. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262-1267. [DOI:10.1126/science.1223813]
49. van der Kleij H, O'Mahony C, Shanahan F, O'Mahony L, Bienenstock J. Protective effects of Lactobacillus reuteri and Bfidobacterium infantis in murine models for colitis do not involve the vagus nerve. American journal of physiology-regulatory, integrative and comparative physiology 2008; 295(4): R1131-R1137. [DOI:10.1152/ajpregu.90434.2008]
50. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen M, Madsen KL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. American journal of physiology-gastrointestinal and liver physiology 2008; 295(5): G1025-G1034. [DOI:10.1152/ajpgi.90227.2008]
51. Rodes L, Khan A, Paul A, Coussa-Charley M, Marinescu D, Tomaro-Duchesneau C, Shao W, Kahouli I, Prakash S. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. Journal of microbiology and biotechnology 2013; 23(4): 518-526. [DOI:10.4014/jmb.1205.05018]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.