Volume 24, Issue 5 (9-2020)                   ibj 2020, 24(5): 295-305 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi E, Saghafi N, Rezaee S A R, Rastin M, Jarahi L, Clifton V et al . Evaluation of 1,25(OH)2D3 Effects on FOXP3, ROR-γt, GITR, and CTLA-4 Gene Expression in the PBMCs of Vitamin D-Deficient Women with Unexplained Recurrent Pregnancy Loss (URPL). ibj. 2020; 24 (5) :295-305
URL: http://ibj.pasteur.ac.ir/article-1-3058-en.html
Abstract:  
Background: Vitamin D insufficiency and deficiency can be associated with adverse effects on fetus and pregnancy outcomes. This study aimed at evaluating the effect of 1,25VitD3 on specific transcription factor and markers of Tregs and T helper 17 (Th17) cells in peripheral blood mononuclear cells (PBMCs) of women with unexplained recurrent pregnancy loss (URPL) as a case group and PBMCs of healthy women as a control group. Methods: Samples from 20 non-pregnant patients with a history of URPL were compared to 20 normal non-pregnant women. PBMCs were divided into three wells for each subject in the presence of 1,25VitD3 (50 nM, for 16 hours), phytohemagglutinin (10 µM; positive control), and without any treatment (negative control). By Real-time PCR (Taqman assay), specific transcription factors of Tregs and Th17 cells, forkhead box P3 (FOXP3), retinoic acid-related orphan receptor γt (ROR-γt), glucocorticoid-induced tumor necrosis factor receptor-related (GITR), and CTLA-4 mRNA expressions in two groups were measured. Results: FOXP3/ROR-γt mRNA expression in PBMCs decreased significantly in women experiencing URPL compared to the control group (p = 0.0001). Although 1,25VitD3 (50 nM) increased FOXP3 gene expression (p = 0.0001), it did not significantly affect ROR-γt gene expression. Besides, 1,25VitD3 treatment significantly increased FOXP3/ROR-γt mRNA expression from baseline in PBMCs of the fetal loss group compared to that of the control group (p = 0.01). The 1,25VitD3 also increased GITR gene expression (p = 0.017) in PBMCs of URPL women compared to the controls. Conclusion: Vitamin D deficiency may be a contributor to recurrent pregnancy loss and suggests that the supplementation of women with Vitamin D pre-pregnancy may be protective against URPL via affecting Tregs signature genes, FOXP3 and GITR.
Keywords: FOXP3, CTLA-4, 1, 25VitD3
Type of Study: Full Length | Subject: Molecular Immunology & Vaccines

References
1. Heitmann RJ, Weitzel RP, Feng Y, Segars JH, Tisdale JF, Wolff EF. Maternal T regulatory cell depletion impairs embryo implantation which can be corrected with adoptive T regulatory cell transfer. Reproductive sciences 2017; 24(7): 1014-1024. [DOI:10.1177/1933719116675054]
2. Heitmann RJ, Weitzel RP, Feng Y, Segars JH, Tisdale JF, Wolff EF. Maternal T regulatory cell depletion impairs embryo implantation which can be corrected with adoptive T regulatory cell transfer. Reproductive sciences 2017; 24(7): 1014-1024. [DOI:10.1177/1933719116675054]
3. Robertson S. Knobil and Neill's Physiology of Reproduction. In: Petroff MG, Hunt JS. Immunology of Pregnancy. UK: Elsevier; 2015. p. 1835-1874. [DOI:10.1016/B978-0-12-397175-3.00041-7]
4. . Focus on recurrent miscarriage phenotypes. Fertility and sterility 2017; 107(1): 64-65. [DOI:10.1016/j.fertnstert.2016.10.034]
5. Lee SK, Na BJ, Kim JY, Hur SE, Lee M, Gilman‐Sachs A, Kwak-Kim J. Determination of clinical cellular immune markers in women with recurrent pregnancy loss. American journal of reproductive immunology 2013; 70(5): 398-411. [DOI:10.1111/aji.12137]
6. Tavasolian F, Abdollahi E, Samadi M. Association of the IL4R single-nucleotide polymorphism I50V with recurrent spontaneous abortion (RSA). Journal of assisted reproduction and genetics 2014; 31(7): 851-856. [DOI:10.1007/s10815-014-0234-z]
7. Rai R, Regan L. Recurrent miscarriage. The lancet 2006; 368(9535): 601-611. [DOI:10.1016/S0140-6736(06)69204-0]
8. Heuser C, Dalton J, Macpherson C, Branch DW, Porter TF, Silver RM. Idiopathic recurrent pregnancy loss recurs at similar gestational ages. American journal of obstetrics and gynecology 2010; 203(4): 343.e1-343.e5. [DOI:10.1016/j.ajog.2010.05.010]
9. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nature immunology 2004; 5(3): 2660-271. [DOI:10.1038/ni1037]
10. Kamali M, Hantoushzadeh S, Borna S, Neamatzadeh H, Mazaheri M, Noori-Shadkam M, Haghighi F. Association between thrombophilic genes polymorphisms and recurrent pregnancy loss susceptibility in the Iranian population: a systematic review and meta-analysis. Iranian biomedical journal 2018; 22(2): 78-89.
11. Ghafourian Boroujerdnia M, Chinipardaz R. Endometrial granulated lymphocytes in women suffering spontaneous early pregnancy loss. Iranian biomedical journal 2002; 6(2 & 3): 89-92.
12. La Rocca C, Carbone F, Longobardi S, Matarese G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunology letters 2014; 162(1 Pt ): 41-48. [DOI:10.1016/j.imlet.2014.06.013]
13. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology today 1993; 14(7): 353-356. [DOI:10.1016/0167-5699(93)90235-D]
14. Piccinni MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nature medicine 1998; 4(9): 1020-1024. [DOI:10.1038/2006]
15. Raghupathy R. Th 1-type immunity is incompatible with successful pregnancy. Immunology today 1997; 18(10): 478-482. [DOI:10.1016/S0167-5699(97)01127-4]
16. Riazi Rad FR, Ajdary S, Omranipour R, Alimohammadian MH, Hassan ZM. Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer. Iranian biomedical journal 2015; 19(1): 35-44.
17. Wu L, Luo LH, Zhang YX, Li Q, Xu B, Zhou GX, Luan HB, Liu YS. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reproductive biology and endocrinology 2014; 12: 74. [DOI:10.1186/1477-7827-12-74]
18. Lee S, Kim J, Hur S, Kim C, Na B, Lee M, Gilman-Sachs A, Kwak-Kim J. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Human reproduction 2011; 26(11): 2964-2971. [DOI:10.1093/humrep/der301]
19. Wang WJ, Hao CF, Qu QL, Wang X, Qiu LH, Lin QD. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Human reproduction 2010; 25(10): 2591-2596. [DOI:10.1093/humrep/deq198]
20. Lastovicka J. The phenotypic markers of CD4+ CD25+ T regulatory lymphocytes. Reseach in immunology 2013; 2013: 1-14. [DOI:10.5171/2013.119348]
21. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature immunology 2008; 9(3): 239-244. [DOI:10.1038/ni1572]
22. Tilburgs T, Roelen DL, van der Mast BJ, de Groot-Swings GM, Kleijburg C, Scherjon SA, Claas FH. Evidence for a selective migration of fetus-specific CD4+ CD25 bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. The journal of immunology 2008; 180(8): 5737-5745. [DOI:10.4049/jimmunol.180.8.5737]
23. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology 2003; 4(4): 330-336. [DOI:10.1038/ni904]
24. Corthay A. How do regulatory T cells work? Scandinavian journal of immunology 2009; 70(4): 326-336. [DOI:10.1111/j.1365-3083.2009.02308.x]
25. Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nature reviews immunology 2008; 8(7): 523-532. [DOI:10.1038/nri2343]
26. Aluvihare VR, Betz AG. The Role of Regulatory T Cells in Materno-Fetal Tolerance. Immunology of Pregnancy. Germany: Springer; 2006.
27. Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Human reproduction update 2009; 15(5): 517-535. [DOI:10.1093/humupd/dmp004]
28. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annual review of immunology 2009; 27: 485-517. [DOI:10.1146/annurev.immunol.021908.132710]
29. van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of autoimmunity 2018; 87: 69-81. [DOI:10.1016/j.jaut.2017.12.006]
30. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nature reviews drug discovery 2012; 11(10): 763-76. [DOI:10.1038/nrd3794]
31. Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, Samadi M, Rafatpanah H. Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A comprehensive review. Journal of immunotoxicology 2016; 13(3): 286-300. [DOI:10.3109/1547691X.2015.1115448]
32. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity reviews 2014; 13(6): 668-677. [DOI:10.1016/j.autrev.2013.12.004]
33. Nakashima A, Ito M, Shima T, Bac ND, Hidaka T, Saito S. Accumulation of IL‐17‐positive cells in decidua of inevitable abortion cases. American journal of reproductive immunology 2010; 64(1): 4-11. [DOI:10.1111/j.1600-0897.2010.00812.x]
34. Liu F, Guo J, Tian T, Wang H, Dong F, Huang H, Dong M. Placental trophoblasts shifted Th1/Th2 balance toward Th2 and inhibited Th17 immunity at fetomaternal interface. APMIS 2011; 119(9): 597-604. [DOI:10.1111/j.1600-0463.2011.02774.x]
35. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX, Luo LH, Luan HB. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. American journal of reproductive immunology 2011; 65(5): 503-511. [DOI:10.1111/j.1600-0897.2010.00921.x]
36. Hosseini S, Shokri F, Ansari Pour S, Jeddi-Tehrani M, Nikoo S, Yousefi M, Zarnani AH. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. Journal of reproductive immunology 2016; 116: 13-22. [DOI:10.1016/j.jri.2016.03.001]
37. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235-238. [DOI:10.1038/nature04753]
38. Yang H, Qiu L, Chen G, Ye Z, Lü C, Lin Q. Proportional change of CD4+ CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertility and sterility 2008; 89(3): 656-661. [DOI:10.1016/j.fertnstert.2007.03.037]
39. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T‐cell subset. Immunology 2004; 112(1): 38-43. [DOI:10.1111/j.1365-2567.2004.01869.x]
40. Heyden E, Wimalawansa S. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. The journal of steroid biochemistry and molecular biology 2018; 180: 41-50. [DOI:10.1016/j.jsbmb.2017.12.011]
41. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends in biochemical sciences 2004; 29(12): 664-673. [DOI:10.1016/j.tibs.2004.10.005]
42. Dabrowski F, Grzechocinska B, Wielgos M. The role of vitamin D in reproductive health-a Trojan horse or the golden fleece? Nutrients 2015; 7(6): 4139-4153. [DOI:10.3390/nu7064139]
43. Luk J, Torrealday S, Neal Perry G, Pal L. Relevance of vitamin D in reproduction. Human reproduction 2012; 27(10): 3015-3027. [DOI:10.1093/humrep/des248]
44. Blomberg Jensen M, Gerner Lawaetz J, Andersson A-M, Petersen JH, Nordkap L, Bang AK, Ekbom P, Joensen UN, Prætorius L, Lundstrøm P, Boujida VH, Lanske B, Juul A, Jørgensen N. Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Human reproduction 2016; 31(8): 1875-1885. [DOI:10.1093/humrep/dew152]
45. Young BE, Cooper EM, McIntyre AW, Kent T, Witter F, Harris ZL, O'Brien KO. Placental vitamin D receptor (VDR) expression is related to neonatal vitamin D status, placental calcium transfer, and fetal bone length in pregnant adolescents. The FASEB journal 2014; 28(5): 2029-2037. [DOI:10.1096/fj.13-246736]
46. Knabl J, Vattai A, Ye Y, Jueckstock J, Hutter S, Kainer F, Mahner S, Jeschke U. Role of placental VDR expression and function in common late pregnancy disorders. International journal of molecular sciences 2017; 18(11): 2340. [DOI:10.3390/ijms18112340]
47. Shahbazi M, Jeddi-Tehrani M, Zareie M, Salek-Moghaddam A, Akhondi M, Bahmanpoor M, Sadeghi MR, Zarnani AH. Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 2011; 32(9): 657-664. [DOI:10.1016/j.placenta.2011.06.013]
48. Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. Journal of biological chemistry 2010; 285(5): 38751-38755. [DOI:10.1074/jbc.C110.185777]
49. Bubanovic I. 1α,25-dihydroxy-vitamin-D3 as new immunotherapy in treatment of recurrent spontaneous abortion. Medical hypotheses 2004; 63(2): 250-253. [DOI:10.1016/j.mehy.2003.11.037]
50. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. The FASEB journal 2001; 15(14): 2579-2585. [DOI:10.1096/fj.01-0433rev]
51. Ji J, Zhai H, Zhou H, Song S, Mor G, Liao A. The role and mechanism of vitamin D‐mediated regulation of Treg/Th17 balance in recurrent pregnancy loss. American journal of reproductive immunology 2019; 81(6): e13112. [DOI:10.1111/aji.13112]
52. Pandey MK, Rani R, Agrawal S. An update in recurrent spontaneous abortion. Archives of gynecology and obstetrics 2005; 272(2): 95-108. [DOI:10.1007/s00404-004-0706-y]
53. Krieg S, Fan X, Hong Y, Sang QX, Giaccia A, Westphal L, Lathi RB, Krieg AJ, Nayak NR. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Molecular human reproduction 2012; 18(9): 442-450. [DOI:10.1093/molehr/gas017]
54. Pandey MK, Thakur S, Agrawal S. Lymphocyte immunotherapy and its probable mechanism in the maintenance of pregnancy in women with recurrent spontaneous abortion. Archives of gynecology and obstetrics 2004; 269(3): 161-172. [DOI:10.1007/s00404-003-0560-3]
55. Omwandho CA, Tinneberg HR, Tumbo-Oeri AG, Roberts TK, Falconer J. Recurrent pregnancy losses and the role of immunotherapy. Archives of gynecology and obstetrics 2000; 264(1): 3-12. [DOI:10.1007/PL00007480]
56. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T‐cell paradigm in pregnancy. American journal of reproductive immunology 2010; 63(6): 601-610. [DOI:10.1111/j.1600-0897.2010.00852.x]
57. Teles A, Thuere C, Wafula PO, El-Mousleh T, Zenclussen ML, Zenclussen AC. Origin of Foxp3+ cells during pregnancy. American journal of clinical and experimental immunology 2013; 2(3): 222-233.
58. Jin LP, Chen QY, Zhang T, Guo PF, Li DJ. The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clinical immunology 2009; 133(3): 402-410. [DOI:10.1016/j.clim.2009.08.009]
59. Kwak‐Kim JY, Chung‐Bang HS, Ng SC, Ntrivalas EI, Mangubat CP, Beaman KD, Beer AE, Gilman-Sachs A. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Human reproduction 2003; 18(4): 767-773. [DOI:10.1093/humrep/deg156]
60. Saito S, Sasaki Y, Sakai M. CD4+CD25 high regulatory T cells in human pregnancy. Journal of reproductive immunology 2005; 65(2): 111-120. [DOI:10.1016/j.jri.2005.01.004]
61. Mei S, Tan J, Chen H, Chen Y, Zhang J. Changes of CD4+CD25 high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertility and sterility 2010; 94(6): 2244-2247. [DOI:10.1016/j.fertnstert.2009.11.020]
62. Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. The immunophenotype of patients with recurrent pregnancy loss. European journal of obstetrics and gynecology and reproductive biology 2002; 103(1): 53-57. [DOI:10.1016/S0301-2115(02)00025-8]
63. Vassiliadou N, Searle R, Bulmer J. Immunoregulatory activity of decidua in spontaneous early pregnancy loss. Human reproduction 1999; 14(9):2252-2256. [DOI:10.1093/humrep/14.9.2252]
64. Abdollahi E, Tavasolian F, Ghasemi N, Mirghanizadeh SA, Azizi M, Ghoryani M, Samadi M. Association between lower frequency of R381Q variant (rs11209026) in IL-23 receptor gene and increased risk of recurrent spontaneous abortion (RSA). Journal of immunotoxicology 2015; 12(4): 317-321. [DOI:10.3109/1547691X.2014.978056]
65. Prots I, Skapenko A, Wendler J, Mattyasovszky S, Yoné CL, Spriewald B, Burkhardt H, Rau R, Kalden JR, Lipsky PE, Schulze-Koops H. Association of the IL4R single‐nucleotide polymorphism I50V with rapidly erosive rheumatoid arthritis. Arthritis and rheumatism 2006; 54(5): 1491-500. [DOI:10.1002/art.21832]
66. Saifi B, Rezaee SA, Tajik N, Ahmadpour ME, Ashrafi M, Vakili R, Soleimani Asl S, Aflatoonian R, Mehdizadeh M. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reproductive biomedicine online 2014; 29(4): 481-489. [DOI:10.1016/j.rbmo.2014.06.008]
67. Vijayendra Chary A, Hemalatha R, Seshacharyulu M, Vasudeva Murali M, Jayaprakash D, Dinesh Kumar B. Vitamin D deficiency in pregnant women impairs regulatory T cell function. The journal of steroid biochemistry and molecular biology 2015; 147: 48-55. [DOI:10.1016/j.jsbmb.2014.11.020]
68. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, LAmmas DA, Reza K, Sansom DM. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. The journal of immunology 2009; 183(9): 5458-5467. [DOI:10.4049/jimmunol.0803217]
69. Mayne CG, Spanier JA, Relland LM, Williams CB, Hayes CE. 1,25‐Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. European journal of immunology 2011; 41(3): 822-832. [DOI:10.1002/eji.201040632]
70. Wittke A, Weaver V, Mahon BD, August A, Cantorna MT. Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. The journal of immunology 2004; 173(5): 3432-3436. [DOI:10.4049/jimmunol.173.5.3432]
71. Li Z, Mahesh SP, Kim BJ, Buggage RR, Nussenblatt RB. Expression of glucocorticoid induced TNF receptor family related protein (GITR) on peripheral T cells from normal human donors and patients with non-infectious uveitis. Journal of autoimmunity 2003; 21(1): 83-92. [DOI:10.1016/S0896-8411(03)00085-4]
72. Heikkinen J, Möttönen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clinical and experimental immunology 2004; 136(2): 373-378. [DOI:10.1111/j.1365-2249.2004.02441.x]
73. Placke T, Kopp HG, Salih HR. Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: functional role and therapeutic modulation. Clinical and developmental immunology 2010; 2010: 239083. [DOI:10.1155/2010/239083]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Iranian Biomedical Journal

Designed & Developed by : Yektaweb