Volume 24, Issue 5 (9-2020)                   ibj 2020, 24(5): 324-332 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi G, Mousavi S F, Ebrahimi-Rad M, Mirabzadeh-Ardekani E, Eslamifar A, Shams-Ghahfarokhi M, et al . In vivo and in vitro Pathogenesis and Virulence Factors of Candida albicans Strains Isolated from Cutaneous Candidiasis. ibj. 2020; 24 (5) :324-332
URL: http://ibj.pasteur.ac.ir/article-1-3055-en.html
Abstract:  
Background: The Candida albicans is one of the most important global opportunistic pathogens, and the incidence of candidiasis has increased over the past few decades. Despite the established role of skin in defense against fungal invasion, little has been documented about the pathogenesis of Candida species when changing from normal flora to pathogens of vaginal and gastrointestinal epithelia. This study was carried out to determine the in vivo and in vitro pathogenesis of clinical C. albicans strains isolated from skin lesions. Methods: In this study, association of in vivo and in vitro pathogenesis of C. albicans isolates with different evolutionary origins was investigated. Oral and systemic experimental candidiasis was established in BALB/C mice. The expression levels of secreted aspartyl proteinases (SAP1-3 genes), morphological transformation, and biofilm-forming ability of C. albicans were evaluated. Results: All the strains showed in vitro and in vivo pathogenicity by various extents. The SAP1, SAP2, and SAP3 genes were expressed in 50%, 100%, and 75% of the strains, respectively. The biofilm formation ability was negative in 12% of the strains, while it was considerable in 38% of the strains. Fifty percent of the strains had no phospholipase activity, and no one demonstrated high level of this pathogenesis factor. Relatively all the strains had very low potency to form pseudohyphae. Conclusion: Our findings demonstrated that Candida albicans strains isolated from cutaneous candidiasis were able to cause oral and systemic infections in mice, so they could be considered as the potential agents of life-threatening nosocomial candidiasis in susceptible populations.
Type of Study: Full Length | Subject: Molecular Microbiology

References
1. Ortega M, Marco F, Soriano A, Almela M, Martínez JA, López J, Pitart C, Mensa J. Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. Journal of hospital infection 2011; 77(2): 157-161. [DOI:10.1016/j.jhin.2010.09.026]
2. Razzaghi-Abyaneh M, Sadeghi G, Zeinali E, Alirezaee M, Shams-Ghahfarokhi M, Amani A, Mirahmadi R, Tolouei R. Species distribution and antifungal susceptibility of Candida spp. isolated from superficial candidiasis in outpatients in Iran. Journal de mycologie médicale 2014; 24(2): 43-50. [DOI:10.1016/j.mycmed.2014.01.004]
3. Yildirim M, Sahin I, Kucukbayrak A, Ozdemir D, Tevfik Yavuz M, Oksuz S, Cakir S. Hand carriage of Candida species and risk factors in hospital personnel. Mycoses 2007; 50(3): 189-192. [DOI:10.1111/j.1439-0507.2006.01348.x]
4. Kühbacher A, Burger-Kentischer A, and Rupp S. Interaction of Candida species with the skin. Microorganisms 2017; 5(32): doi: 10.3390/micro-organisms5020032. [DOI:10.3390/microorganisms5020032]
5. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Critical reviews in microbiology 2010; 36(1): 1-53. [DOI:10.3109/10408410903241444]
6. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013; 4(2): 119-128. [DOI:10.4161/viru.22913]
7. Rahman D, Mistry M, Thavaraj S, Challacombe SJ, and Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host pathogen interactions. Microbes and infection 2007; 9(5): 615-622. [DOI:10.1016/j.micinf.2007.01.012]
8. MacCallum DM. Hosting infection: experimental models to assay Candida virulence. International journal of microbiology 2012; 2012: Article ID 363764. [DOI:10.1155/2012/363764]
9. Szabo EK and MacCallum DM. The contribution of Mouse models to our understanding of systemic candidiasis. FEMS microbiology letters 2011; 320(1): 1-8. [DOI:10.1111/j.1574-6968.2011.02262.x]
10. Yu S, Li W, Liu X, Che J, Wu Y and Lu J. Distinct expression levels of ALS, LIP, and SAP genes in Candida tropicalis with diverse virulent activities. Frontiers in microbiology 2016; 7: 1175. [DOI:10.3389/fmicb.2016.01175]
11. Frenkel M, Mandelltat M, Alastruey-Izquierdo A, Mendlovic S, Semis R, and Segal E. Pathogenicity of Candida albicans isolates from bloodstream and mucosal candidiasis assessed in mice and Galleria mellonella. Journal de mycologie médicale 2016; 26(1): 1-8. [DOI:10.1016/j.mycmed.2015.12.006]
12. Richardson JP, Ho J and Naglik JR. Candida-epithelial interactions. Journal of fungi 2018; 4(1): doi: 10.3390/jof4010022. [DOI:10.3390/jof4010022]
13. Sadeghi G, Ebrahimi-Rad M, Shams-Ghahfarokhi M, Jahanshiri Z, Ardakani E, Eslamifar A, Mousavi SF, Razzaghi-Abyaneh M. Cutaneous candidiasis in Tehran-Iran: From epidemiology to multilocus sequence types, virulence factors and antifungal susceptibility of etiologic Candida species. Iranian journal of microbiology 2019; 11(4): 267-279. [DOI:10.18502/ijm.v11i4.1463]
14. Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. Journal of innate immunity 2011; 3(2):180-199. [DOI:10.1159/000321157]
15. Wong SS, Kao RY, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS one 2014; 9(1): e85836. [DOI:10.1371/journal.pone.0085836]
16. Conti HR, Huppler AR, Whibley N, Gaffen SL. Animal models for candidiasis. Current protocols in immunology 2014; 105(1): 19.6.1-19.6.17. [DOI:10.1002/0471142735.im1906s105]
17. Monroy-Pérez E, Paniagua-Contreras GL, Vaca- Paniagua F, Negrete-Abascal E, Vaca S. SAP expression in Candida albicans strains isolated from Mexican patients with vaginal candidiasis. International journal of clinical medicine 2013; 4(1): 25-31. [DOI:10.4236/ijcm.2013.41006]
18. Dabiri S, Shams-Ghahfarokhi M, Mehdi Razzaghi-Abyaneh M. SAP(1-3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different candidosis. Journal of pure and applied microbiology 2016; 10(3): 1891- 1896.
19. Zago CE, Silva S, Sanitá PV, Borbugli PA, Dias CM, Lordello VB, Vergani CE. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PLoS one 2015; 10(4): doi: 10.1371/journal.pone.0123206. [DOI:10.1371/journal.pone.0123206]
20. Tsang CS, Chu FC, Leung WK, Jin LJ, Samaranayake LP, Siu SC. Phospholipase, proteinase and hemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. Journal of medical microbiology 2007; 56(Pt 10): 1393-1398. [DOI:10.1099/jmm.0.47303-0]
21. Galán-Ladero MA, Blanco MT, Sacristán B, Fernández- Calderón MC, Pérez-Giraldo C, Gómez-García AC. Enzymatic activities of Candida tropicalis isolated from hospitalized patients. Medical mycology 2010; 48(1): 207-210. [DOI:10.3109/13693780902801242]
22. Negri M, Martins M, Henriques M, Svidzinski TIF, Azeredo J, Oliveira R. Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia 2010; 169(3): 175-182. [DOI:10.1007/s11046-009-9246-0]
23. Taghipour S, Rezaei-Matehkolaei A, Zarei Mahmoudabadi A. Antifungal susceptibility profiles of Candida species isolated from Ahvaz Jundishapur educational hospitals. Jundishapur journal of microbiology 2018; 11(11): e78851. [DOI:10.5812/jjm.78851]
24. Nasution AI. Virulence factor and pathogenicity of Candida albicans in oral candidiasis. World journal of dentistry 2013; 4(4): 267-271. [DOI:10.5005/jp-journals-10015-1243]
25. Costa CR, Passos XS, Souza LK, Lucena PA, Fernandes Ode F, Silva Mdo R. Differences in exoenzyme production and adherence ability of Candida spp. isolates from catheter, blood and oral cavity. Revista do instituto de medicina tropical de são paulo 2010; 52(3): 139-143. [DOI:10.1590/S0036-46652010000300005]
26. Wibawa T. The role of virulence factors in Candida albicans pathogenicity. Journal of medical science 2016; 48(1): 58-68. [DOI:10.19106/JMedSci004801201606]
27. Bruder-Nascimento A, Camargo CH, Mondelli AL, Fátima Sugizaki M, Sadatsune T, Bagagli E. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Brazilian journal of microbiology 2014; 45(4): 1371-1377. [DOI:10.1590/S1517-83822014000400030]
28. Jabra-Rizk MA, Kong EF, Tsui C, Nguyen MH, Clancy CJ, Fidel PL Jr, Noverr M. Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infection and immunity 2016; 84(10): 2724- 2739. [DOI:10.1128/IAI.00469-16]
29. Staniszewska M, Bondaryk M, Siennicka K, Piłat J, Schaller M, Kurzątkowski W. Role of aspartic proteinases in Candida albicans virulence. PART II: Expression of SAP 1-10 aspartic proteinase during Candida albicans infection in vivo. Postępy Mikrobiologii 2012; 51 (2): 127-135.
30. Lima JS, Braga KRGS, Vieira CA, R. Souza WWR, Chávez-Pavoni JH, de Araújo C, Goulart LS. Genotypic analysis of secreted aspartyl proteinases in vaginal Candida albicans isolates. Jornal brasileiro de patologia e medicina laboratorial 2018; 54(1): 28-33. [DOI:10.5935/1676-2444.20180006]
31. Taylor BN, Staib P, Binder A, Biesemeier A, Sehnal M, Röllinghoff M, Morschhäuser J, Schröppel K. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infection and immunity 2005; 73(3):1828 -1835. [DOI:10.1128/IAI.73.3.1828-1835.2005]
32. Chin VK, Lee TY, Rusliza B, Chong PP. Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review. International journal of molecular science 2016; 17(10): E1643. [DOI:10.3390/ijms17101643]
33. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJ, Gow NA, Odds FC. Property differences among the four major Candida albicans strain clades. Eukaryotic cell 2009; 8(3): 373-387. [DOI:10.1128/EC.00387-08]
34. Odds FC, Jacobsen MD. Multilocus sequence typing of pathogenic Candida species. Eukaryotic cell 2008; 7(7): 1075-1084. [DOI:10.1128/EC.00062-08]
35. Tavanti A, Davidson AD, Mark J. Fordyce MJ, Gow NAR, Maiden MC, and Odds FC. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. Journal of clinical microbiology 2005; 43(11): 5601-5613. [DOI:10.1128/JCM.43.11.5601-5613.2005]
36. Asmundsdóttir LR, Erlendsdóttir H, Agnarsson BA, Gottfredsson M. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis. Clinical microbiology and infection 2009; 15(6): 576-585. [DOI:10.1111/j.1469-0691.2009.02840.x]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Iranian Biomedical Journal

Designed & Developed by : Yektaweb