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ABSTRACT

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In
particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like PKC are
involved in memory deficiency. Indeed, PKC regulatory process mediates a-secretase activation to cleave APP in
B-amyloid cascade and tau proteins phosphorylation mechanism. Androgens and cortisol regulate PKC signaling
pathways, affecting the modulation of RACK1. Mitogen-activated protein kinase/ERK signaling pathway depends
on CREB activity in hippocampal neurons and is involved in regulatory processes via PKC and androgens.
Therefore, testosterone and PKC contribute in the neuronal apoptosis. The present review summarizes the
current status of androgens, PKC, and their influence on cognitive learning. Inconsistencies in experimental
investigations related to this fundamental correlation are also discussed, with emphasis on the mentioned
contributors as the probable potent candidates for learning and memory improvement. DOI: 10.29252/ibj.24.2.64
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INTRODUCTION

emory is correlated with several factors,
including time, space, and content. Indeed,
memory process is mediated by molecular
events, which affect neural signaling pathways™?. The
subsequent alterations in neural synapses occur in
hippocampus and related cortices®™. Thus, synaptic
impairment leads to memory defects in hippocampus?.
The involvement of subcortical structures including

“hippocampus” in learning and memory processes has
been well established in the mammalian brain. Various
neuroactive steroids (e.g. androgens) receptors are also
found in hippocampal CA1l pyramidal cells,
which strengthens the fact that hippocampus is an
important target for steroids and their neuromodulatory
actions!*®!. Steroids exert their impacts via genomic
and non-genomic  pathways. Two important
androgens, DHT and DHEA, activate the enzymes
engaged in the memory processes, especially all
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Relationship between PKC, Androgens, and AD

isoforms of PKC!®. PKC is crucial for hippocampal
memory formation and alterations in PKCy contribute
to deficits in hig]pocampal-mediated memory in the
aged individuals'”!. PKC is involved in ph?/siological
processes related to learning and memory®® and is
called cognitive kinase™®. This enzyme regulates
synaptic transmission. Furthermore, PKC and several
of its substrates, including myristoylated alanine-rich
C-kinase substrate, GAP-43, and NMDA receptor,
are involved in the information processing and
storage™ ™. The PKC phosphorylation site plays a
key role in regulating memory-associated tasks for
GAP-43™1 |n addition to the efficacy of neural
signaling pathways, memory process correlates with
the number of synapses and their function. In fact, the
dynamic feature of synapses and their action depend on
their probable significant alteration in shape, density,
and function in reaction to memory requirements*—-.
Aging can lead to deficiency in functional and
behavioral processes such as memory. Two major
cognitive functions are working (temporary) memory
and declarative LTM including episodic or semantic
learning. Working memory is related to prefrontal
cortex, while declarative memory is associated with
hippocampus, perirhinal, entorhinal, and para-
hippocampal cortices. Deficiencies in working and
declarative memory seem to be linked to aging™”.
Aged men’s and women’s cognitive learning show a
functional decline and is mostly influenced by episodic
memory dysfunction™. Attention and executive
control are also found to be degenerated by aging, for
which aged humans fail to switch their attention
between several tasks™, or their ability to organize,
plan, evaluate, or coordinate is impaired®!. The age-
dependent memory dysfunction also leads to the
enhanced vulnerability of brain to injury and various
types of dementia as a consequence®™. Indeed, the
integrity and efficiency of functional processes seem to
be decreased in hippocampus throughout the
lifetime®. This hypothesis has also been approved by
subsequent studies, representing that execution of
memory tasks related to younger rodents are performed
more efficiently and more rapidly than aged ones!?*?*,
Additionally, dentate gyrus region of hippocampus has
shown a decreased rate of metabolism and volume in
elderly humans, monkeys, and mice, which was
connected to memory dysfunction®®?*.  Overall,
memory disorders, including AD, vascular dementia,
PD, dementia, Huntington’s disease, frontotemporal
dementia, traumatic brain injury leading to memory
impairments, mental retardation, depression, alcohol-
related dementia, and Creutzfeldt—Jakob disease, are
caused by deficiency in synaptic pathways, e.g.
synaptic impairment and loss®”. Furthermore, many of
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human cognitive processes are found to be sex-
dependent, suggesting that females are more potent in
verbal fluency, while spatial working memory is
believed to be reinforced in males®". Cognitive
impairments that target neurological and psychiatric
diseases, e.g. PD and schizophrenia, also represent a
sex-related nature, developing in men more frequently
than women®**"). Moreover, AD with a sex-dependent
feature has been characterized as the severe,
progressive neuro-degenerative disorder, which is
believed to be the cause of up to 80% of dementia in
over 60-year-old individuals throughout the world,
leading to memory impairment, cognitive dysfunctions,
behavioral decline, loss of ability to learn, and
consequently death®®“®.  More than 35 million
individuals are affected by AD worldwide, for which
its incidence rate appears to be increasing by aging!*’!.
In addition, studies have recommended that depletion
of steroid hormones associated with aging may have
major impacts on development of AD™. Pathogenesis
study of AD has also demonstrated that this neuro-
degenerative disorder is associated with two major
pathological symptoms: extracellular amyloid plaques
and intracellular neurofibrillary tangles (tau protein)*.

AP performs a critical role in AD pathogenesis.
Although AP leaves the neurons, it may be found in
astrocytes and microglia“®. Aggregation of insoluble
AP plaques in brain is generated by APP cleavage, in
addition to tau (MT protein) hyperphosphorylation,
oxidative stress, and reactive glial, and microglial
changes*4. Despite the wide therapeutic strategies
applied for AD patients in recent years, credible
biomarkers are still needed for disease diagnosis at
early stages. Moreover, the routinely used drugs only
demonstrate effective impacts on disease’s later stages,
with only half of the patients showing decreased levels
of development pace for behavioral and cognitive
symptoms, which only suggests delay in the process of
symptoms progression, not significant inhibition or
cure of the ADP** In the neurons of AD patients, the
first abnormality is a defect in PKC signaling pathway.
Inhibition of PKC activity leads to the reduced learning
and memory capacity®. Based on the types of PKC
isoforms, there are several phosphorylation sites®with
central roles in regulating memory-associated tasks™*®
(Fig. 1). Activation of PKC inhibits the activity of
GSK3; hence, hyperphosphorylation of tau protein is
prevented, and finally the accumulation of AP peptide
is reduced. This review will focus on PKC and its role
in cognitive function associated with androgen
hormone, suggesting a relation with other signaling
pathways.
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Fig 1. Phosphorylation sites identified on PKC isoforms. Phosphorylation sites of each isoform have been presented as a color oval.
Purple color, conventional PKCa, B, and y; bitter lemon color (Ser 319), conventional PKCo, novel PKC; pink color, PKC6; gray color,
PKCS; green color, PKC ¢; yellow color, PKC n; orange color, atypical PKCs. PS, pseudosubstrate; TM, turn motif; HM, hydrophobic

motif, PB1, phosphatidylserine-binding domains; GIn, glutamine

Androgens classification

Hormones have a potent impact on several biological
mechanisms during the life, while causing
physiological alterations to specific tissues in major
developmental periods. In animals, some hormones
promote physiological behaviors or processes, which
seem to be sex-dependent. Indeed, steroid hormones
play a significant role, as these chemical messengers
affect the structural and functional organization
of various tissues in the body, which subsequently
results in sexual differences!*®*”). The major types of
steroid hormones include progestins, androgens,
estrogens, and  corticoids®*.  Male gonadal
hormones, which are characterized as essential agents
responsible for the development and maintenance of
the male reproductive system, are known as
androgens®™>®Y. In fact, 50-DHT is the most
biologically active sex hormone produced by
enzymatic conversion of testosterone via Sa-reductase.
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However, ARs mediate approximately every biological
operation of endogenous androgens®.

Genomic and non-genomic pathways of androgens
Steroids exert their impacts via genomic and non-
genomic pathways. In order to exert genomic
influence, steroid hormones are known to attach to
intracellular receptors and specific DNA sequences
while regulating gene transcription. The non-genomic
pathway is a rapid mechanism using cell surface
receptors in brain and neuroendocrine systems™ with
the ability to prevent the transcriptional and
translational inhibitors®?. Furthermore, non-genomic
pathway of androgens is involved in the formation of
second messengers and activation of PKA and PKC
signaling pathways[55]. However, previous studies have
shown that most androgens impacts are exerted
through genomic pathway via ARP. Nonetheless,
several investigations have demonstrated that both
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Fig 2. Role of steroids in the cell signaling pathways.

pathways are defective in terms of LTME"®! (Fig. 2).
The activation of PKC is dependent on G protein like
Gg. Phospholipase C is typically activated via coupling
with the G protein Gq and results in the DAG, a key
allosteric activator of PKC. Isozymes of PKC signaling
pathway in brain is regulated through DG,

According to studies, hippocampus is known to be
involved in spatial cognition and memory processes,
and a site for the occurrence of neuromodulatory
actions related to androgens, e.g. testosterone, which is
mainly characterized to be a spatial learning
determinant in male rats®®°!,

Male major androgens are testosterone, DHT,
androstenedione, and DHEA, as well as its sulfate
derivatives (DHEA-S). Nevertheless, from the
biological aspect the main androgen is testosterone,
found in cerebral cortex and hippocampus, which
attaches directly to AR or transforms to active DHT by
Sa-reductase’®®. Furthermore, DHEA and DHEA-S
functions in central nervous system are determined as
neuroactive steroids due to their neuronal regulating
activities™. Studies have revealed that rat CAL
pyramidal cells in hippocampus are the site of AR
immunoreactivity, where androgens are able to
increase male excitability of neurons. Moreover, the
regulation of hippocampus-mediated behaviors are
dependent on androgens’®!. Generally, androgens
levels decrease in male over lifetime. The deficiency of
androgens leads to muscle mass and strength decline,
behavioral and emotional changes, depression, memory
impairment, and co?nitive dysfunction, which are
associated with AD®®. Concerning the involvement of
androgens in cognition, a number of studies have been
performed so far. Positive correlation of endogenous
testosterone and spatial learning has previously been
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confirmed in healthy men®®®], Nonetheless, following
many other researches, verification of positive
connection of endogenous testosterone and spatial
ability is rejected® . Such inconsistencies in results
may be due to wide range of androgens functions or the
detailed differences in experimental conditions.

Overall, due to the essential role of androgens in
cognitive learning, androgen replacement therapy has
become under focus. Previous findings have revealed
that vascular dementia patients indicate memory
improvement when treated with androgen replacement
therapy!™". Scientists have investigated testosterone
levels in orchidectomized rats, and their results
demonstrated that testosterone treatment using tenfold
concentration levels greater than normal testosterone
levels leads to memory improvement!™. Hawley et
al.® have also confirmed the ideas of spatial cognition
improvement resulted by testosterone therapy in
rodents. Formerly, it has determined that LTM could
be impaired in the presence of testosterone in passive
avoidance conditioning both via intracellular AR and
through the non-genomic effects of steroids’* ™.
DHEA-S activates an allosteric site on the GABA
receptor that inhibits chloride channel opening, thus
increasing neuronal excitability!""®!. At the same time,
injection of DHEA-S, a negative allosteric modulator
of the GABA-A receptor, can increase the release of
acetylcholine, which is a neurotransmitter closel
associated with memory function in hippocampust™.
Therefore, higher concentration of testosterone by
acting as a non-selective sigma antagonist leads to
lower NMDA receptor function. Therefore, the release
of acetylcholine in hippocamé)us increased in the
presence of steroid hormones®.

In aged men, a positive correlation has been found
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for cognition process and free testosterone levels®!,
Moreover, according to a wide range population of
men and women (35-90 years old), free testosterone
concentration indicated a sex-specific behavior and
impact on cognitive functions, including visuospatial
ability, episodic learning, semantic memory, and
verbal fluency[es], while testosterone concentration
represented positive trends with visuospatial learning
in women. Nonetheless, attempts to find a connection
between verbal fluency, semantic memory, and
testosterone levels have been failed®®!. On the other
hand, testosterone rate in women is believed to be
positively or negatively related to episodic memory
based on previous studies®®!, which is contradictory.
Conversion of testosterone to DHT via So-reductase,
as well as to non-aromatic metabolite like 5a-
androstane-17p-diol (3a-diol), by 3a-HSD has also
been under discussion. Research has proposed that
cognitive functions are improved in gonadectomized
rats, which were systemically administrated by 3a-
diol®. Additionally, a complementary study was
conducted to observe the intrahippocampal
administration effect of 3a-diol and indomethacin (as a
3a-HSD inhibitor which blocks testosterone and DHT
conversion to 3a-diol) on spatial cognition. According
to the results, it was concluded that simultaneous
injection of 3a-diol, and indomethacin did not alter
impairment influence of indomethacin or 3a-diol alone
in Morris water maze taskl®”. DHT treatment of rats
also demonstrated the efficacy of DHT in reduction of
escape latency and traveled distance in the Morris

metabolites may have significant impacts on memory
functions®. Testosterone influence on the right and
left hippocampus was also studied recently™. Notable
reduction of the mentioned hormone was only detected
in right hippocampus, while a low percentage of right
hippocampus testosterone led to its conversion to other
metabolites®®. Furthermore, regarding the effect of
testosterone on memory process, scientists observed
that the number of astrocytes in the CAL region of rats
enhanced bgy memory impairment induction via
testosterone™! (Fig. 3).

DHEA and DHEA-S have been proposed to be
responsible for the acceleration of age-related physical
and memory processesi®. Inconsistent results have
been obtained that indicate an inverse trend of DHEA-
S concentration with aging-associated men’s and
women’s memory impairment[gz]. However,
contradictory findings have suggested that DHEA-S
reduction may not be attributed to cognitive
functions®. Although DHEA and DHEA-S have been
shown to improve the aging rodents’ memory
functions®*®!, based on another piece of evidence, no
significant alteration was detected in spatial cognition
of mice treated with DHEA-S®!,

The neuropsychiatric and cognitive influences of
DHEA and DHEA-S are resulted from GABA,
NMDA, and o-receptor potentiation effects. The
mentioned hormones enhance regional serotonin and
dopamine function in brain, hippocampal primed
burst potentiation and cholinergic function, anti-
glucocorticoid activity, inhibition of proinflammatory

water maze, which proposed that testosterone
20-22 Lyase .
Cholesterol - Prognenolone 14_)-'“ Hydroxylase 17-hydroxypregnenolone
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Fig. 3. Biosynthesis of HSD and DHEA-S in the body.
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factors production, and bioavailability of insulin-like
growth factor 179 These results demonstrated the
effect of DHEA-S in global cognition, working
memory, attention, and verbal fluency. The difference
between the effect of DHA and DHEA-S is probably
related to the dose as well as the age of the patients.
However, the safety of this treatment is controversial,
and the risk of side effects may increase at higher
doses[103,104].

The functional role of testosterone and estrogen has
formerly been distinguished by scientists. It was
recommended that the defect in spatial memory
process was associated with testosterone and estrogen,
while anastrozole (an aromatase inhibitor) improved
the cognitive functions*®!. In addition, owing to the
significant role of estrogens in memory process,
modulation of cognitive functions via inhibitors of ER
(comprising of ERa and ERp isoforms) was observed
using ERa agonist PPT and ER antagonists flutamide
and TAX. Based on the findings, the microinjection of
PPT and TAX simultaneously in hippocampus CA1l
region of male rats leads to the spatial cognition
impairment, which may stand for the fact that there
may be substitutional estrogenic mechanism for the
regulation of memory processes’®®. The sensitivity to
transcription and translation inhibitors (actinomycin D,
cycloheximide, and anisomycin) is also characterized
as the androgens genomic importance. Thus, research
has been performed to observe anisomycin influence
on genomic functions of testosterone. The
simultaneous administration of testosterone and
anisomycin have been indicated to increase the spatial
cognition improvement!™.

Protein kinases

More than 500 protein kinases have been identified
in humanst®”. Evolutionary studies have resulted in
their classification based upon catalytic domains
into seven major groups: tyrosine kinase, tyrosine
kinase-like, homologues of yeast Sterile 7, 11, and 20
kinases, CDK, MAPK, GSK3, and CDK?2-like
kinase that lately they were named as CMGC, casein
kinase 1, CaMK, and AGC kinase groups, including
the protein kinase A, G, and C families *°). AGC
kinase cluster is comprised of cAMP-dependent PKA,
cGMP-dependent PKG, and PKCH®®! AGC kinase
cluster affects various health issues including cancer,
metabolic  disorders,  cardiovascular  diseases,
immunological disorders, muscular dystrophies, and
neurological disorderst*4,

Protein kinases alter their target proteins' functions
through the phosphorylation. In fact, protein kinases
serve as essential factors regulating intracellular
signaling pathways pertaining to cell growth,
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differentiation, development, functions, and death!**!.
The effect of protein kinases on AD has been under
discussion. Besides, PDE superfamily is located in
brain™®. Studies have suggested that PDE inhibitors
may have significant impacts on spatial cognition and
cholinergic activity in hippocampus™ ", Until now,
little is known about the function of these types of
esterases. Indeed, cAMP and cGMP pathways
incorporate in AD, while it is believed that their
concentration is increased by PDE inhibitors. Hence,
Hosseini-Sharifabad et al.'! focused on PDE/protein
kinases A and G relationship influence on cholinergic
activity and memory impairment. According to their
findings, they recommended that the PDE inhibitor
promotion of CAMP/PKA- and cGMP/PKG-mediated
pathways activities could increase the spatial memory
in hippocampus, while chronic enhancement of
cholinergic activity was not confirmed. Additionally,
PKAII impact on spatial learning has been observed
lately. The published data suggest that PKAII
inhibition could affect the spatial memory.
Nonetheless, when a PKAII inhibitor, like H-89, was
co-administered with testosterone, negative correlation
in memory process was detected™®!. Furthermore, the
role of PKAIlI in cholinergic gene expression
modulation has been studied, which confirms that
PKAII acts as an important agent in spatial cognition
retention in male rats!*?). However, the widely known
protein kinase responsible for memory processes is
PKC, for which several investigations have been
conducted to elucidate its detailed functions in various
signaling pathways.

PKC classification and its isoforms

The serine/threonine PKC family consists of 12
various isoforms, which are known to be involved in
brain signaling pathways and related regulations, i.e.
cell growth, differentiation, apoptosis, transformation,
tumorigenicity, synaptic function, behavior, and
cognition®*??. Typically, three different subgroups are
characterized as PKC isozymes: classical PKC of a, BI,
BIL, and vy, novel PKC of 9, €, 1, 0, and p, and atypical
PKC of ¢ 1, and A including PKMC®. However,
PKCa, PKCPBI, PKCPII, PKCy, PKCs, PKCe, PKCH,
and PKCn are determined as the eight homologous
isozymes. The intact PKC is believed to be activated
by DAG, while subsequently, it interacts with the
tumor-promoter phorbol ester in the membranes*?**241,
Regarding the memory process, PKC isozymes,
particularly PKCa, PKCy, PKCe, and PKC(, share
essential roles in signaling pathways, which gained
researchers' interest in the memory kinases as the
possible therapeutics for cognition disorders, e.g.
ADY,
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PKC is composed of two major domains: the
regulatory domain (consisting of C1 and C2) and the
catalytic domain (more conserved than the regulatory
domain), including C3, the ATP-binding domain, and
C4, the protein substrate—bindin? domain linked by an
isozyme-specific variable region®*?],

Role of PKC in cell signaling and AD

Gene expression studies of PKC isozymes have
indicated that most isoforms are present during
development period in all tissues. These isoforms still
play opposing roles in various signaling states in the
same cell. Indeed, phorbol ester is determined as an
ineffective activator of PKC rather than DAG, which is
a transient inducer™. The PKC critical role in several
disorders, including diabetes™™, cancer™!, ischemic
heart disease™”, heart failure™™  autoimmune
diseases!'®® ppl2913% ApIHY pinolar disordert™33,
psoriasist™®¥, stroke™®!, demential®, and pain®*®, has
been discussed so far.

In B-amyloid cascade, APP cleavage by a-secretase
or [-secretase is regulated by PKC enzyme
exclusively, which is deficient in AD patients.
Specifically, o-secretase induction is modulated
directly by o and & isozymes or indirectly through
ERKZ1/2 activation by PKC, or simultaneously through
both ways™??. Through o-secretase activity of APP
processing, phosphorylation is increased via PKC
induction. In fact, translocation of PKCa and PKCe
from cytosol to the membrane and Golgi-like structures
occurs by phorbol ester stimulation of a-secretase. As a
consequence, the PKC phosphorylates MAPKSs
ERK1/2, as well as tumor necrosis factor-a converting
enzymes family. It also acts as an a-secretase activity
enhancer. Although statins (cholesterol-lowering
drugs) are found to be a-secretase substitute activators,
which could also increase sAPP release by a-secretase,
PKC or ERK1/2 do not interfere with the process.
From another point of view, B-amyloid oligomers have
the potential role to inactivate PKC through Afg.30
residues™.  Furthermore, AB;4o has degradative
impact on PKC a and y isozymes in normal and AD
patient  individuals™®.  Reduction in  the
phosphorylation of soluble brain proteins through PKC
has also been reported to ha;i')pen at increased
concentration levels of A4 139]. Additionally,
experimental works have confirmed that PKCe
presents degradative effects on A levels in vitro and in
vivo™® " Tau proteins, along with B-amyloid
peptides that stand for memory process regulations,
show the ability to bind to MT structures through
serine/threonine-directed phosphorylation. Indeed, the
tau-MT binding is induced by tau dephosphorylation,
while their dissociation is promoted by tau

70

phosphorylation. The GSK3, CDKS5, the MARK, and
ERKZ1/2 relation in balance are accounted for the
modulation of tau phosphorylation™™*. In particular,
AP142 promotes the activation of ERK1/2, which
subsequently results in tau hyperphosphorylation, and
eventually neuro-degeneration. However, GSK-3j
plays a key role in tau phosphorylationt*3!,

PKC has potential impact on the inhibition of GSK-
3B through the direct process of tau phosphorylation
and neurofibrillary tangle reduction™. GSK-3p
could also be inhibited indirectly by the lower
production of ABi4, via PKC™! The symptoms of
PKC defect include memory loss and reduced PKC and
a-secretase activities, leading to the higher levels of AP
peptides, and as a consequence, the formation of
amyloid plaques. Moreover, decline in the GSK-3f
inhibition via the decreased activity of PKC results in
hyperphosphorylation of tau proteins, and ultimately
inflammation. Additionally, the reduced PKC activity
could be attributed to aging, which is an important risk
factor™*®. Thus, PKC may serve as a candidate
therapeutic agent or a target drug owing to its
significant role in memory process.

PKC and androgens

Androgen deficiency is a major risk factor in aged
men. Among the key impacts of aging on functional
and behavioral processes is reduction in the potency of
immune response, which leads to decreased innate and
adaptive immunity responses™™”. PKC signaling
pathways are associated with lower expression levels
of RACKJ1, which is a kinase and a membrane receptor
scaffold protein. Deficiency in PKC can result in
reduced functional immune responses related to
aging™*®. In fact, active conformational stabilization of
PKCPII is dependent on its attachment to RACKI,
while its translocation is induced by specific PKCpII
substrates, which are critical for immune cell
activation, proliferation, differentiation, and
survival™®*® " According to earlier investigations,
memory impairment and cognitive dysfunctions are
affected b the  mentioned PKC signaling
deficiency™ . Indeed, age-dependent decrease of
DHEA has been found to be correlated with the
reduced expression levels of RACKL. Moreover, in
vitro and in vivo findings declare that DHEA
administration in aging cells of animals and humans
may lead to RACKL1 recovery™. Interestingly,
cortisol levels remain to be unaltered during lifetime,
which results in the total increase of cortisol: DHEA
ratio>*]. Knowing the fact that cortisol demonstrates a
negative correlation with RACK1, then, DHEA defects
can cause the prevention of cortisol activity and,
therefore, the induction of RACKL expression.
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However, experiments have revealed that pretreatment
by DHEA promotes the RACK1 counterbalance, which
had formerly been decreased by cortisol regulatory
effect™!. From another point of view, CREB is a
potent signaling molecule, which is thought to be
associated with androgen neuroprotective functions in
MAPK/ERK pathway™**%8 As a matter of fact,
down-regulation of MAPK/ERK signaling pathway is
in part attributed to CREB, while PI3K/AKkt!™
PKAM cAMK 1VE® and PKC™® are responsible
for regulating CREB activity. Multiple neurotrophic
and neuroprotective impacts are believed to be
mediated by active CREB function in neurons*®*%4,
Although androgens are key activators of CREB
pathway in non-neural cells™®*"1 there is little
information about the androgens role in CREB
signaling activity in neurons. Study on androgens
possible role in the induction of CREB activities in
primary hippocampal neuron cultures have suggested
that CREB molecules show enhanced phosphorylation
due to intracellular AR activation™®!. Interestingly,
androgen-dependent phosphorylation of CREB is not
prevented by the upstream CREB signaling pathways
MAPK/ERK, PI3K/Akt, PKA, or CaMKIV
pharmacological inhibition. However, PKC deficit or
its pharmacological inhibition resulted in CREB
phosphorylation blockage, which recommends that
CREB siPnaIing pathway in neurons is related to AR
and PKC™®! (Fig. 4).

In PD, as a memory disorder, dopamine neurons are
defective™, which is mediated by oxidative stress!"”,
leading to cellular apoptosisi™*™. According to
studies, testosterone is related to the development of
PD by the enhancement of apoptotic pathway!">*™!:
nonetheless, the related death of dopamine neurons and
testosterone correlation have not well been established.
The apoptosis pathway is determined to be regulated
by caspase-31">1"*] when cell death occurs following
PKC processing via caspase-3 activation. In PD as a
memory disorder, dopamine neurons are defective*®%,
which is mediated by oxidative stress™’” leading to
cellular  apoptosist™ 2. According to studies,
testosterone is related to the development of PD by
the x, when cell death occurs following PKC
processing via caspase-3 activation™). Consistent
results have also declared the importance of PKC in
oxidative stress and testosterone functions!*’®*",
Based upon the study of Cunningham et al. "8,
promotion of apoptosis showed to be occurred
following PKC-dependent activation of caspase-3, via
testosterone and DHT in dopaminergic neuronal cells.
Although few experiments have discussed the
significance of androgens in PKC functional behavior,
the key fundamental impacts need to be identified. The
detailed correlation of androgens with PKC signaling
pathways has slightly been known, but further
investigations remain to be performed. In this sense the
study of androgens/PKC association may lead to the
discovery of potent therapeutic agents.

Fig. 4. CREB signaling pathway. Several signaling pathways, including those involving PKA, PKC, DHT, and DHEA, have been
associated with the regulation of de novo protein synthesis in the context of synaptic plasticity, converging on the phosphorylation of
CREB at Serl33 residue to repair cognition dysfunction. PKA, protein kinase A; DHT, dehydrotestosterone; DHEA,
dhedroepiandrosterone; CRE, cCAMP response elements. The following binding DHT and DHEA to their receptors in the cytoplasmic
membrane, several enzymes like PKC, PKA and CaMK are activated. On the other hand, the mentioned hormones activates CREB
protein directly using phopsphorylation on Ser133. Activated CREB protein passes through the nucleus membrane and is bonded to its

receptor to occur the gene expression.
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Genetic and environmental factors result in hlgher
neural accumulation of AP in brain 1, which is a
critical factor in AD pathogenesis. Previous studies
have demonstrated that decrease in endogenous
androgens significantly enhances AB accumulation in
brain. Thus, it could be concluded that androgens play
important roles as the regulators of neural AP levels.
However, loss of this function can promote AD
pathogenesis™®”!. Testosterone and DHT can also
change APP processing and decrease AP levels in
cultured cells by a mechanism that involves the
activation of AR-dependent pathways, indirect
activation of estrogen pathways via aromatization to
estradiol, and modulation of gonadotropin actions via
regulatlon of the hypothalamlc—pltunary gonadal
axis'®. The activation of AR is related to several
protein kinases such as MAPK and/or PKCM83184
DHEA, DHEA-S, and testosterone also decline with
age in brain tissue in men, WhICh can give a rise to the
working memory impairment™®**%!, PKC is crucial for
hippocampal memory formation. Actlvated PKC can
affect signaling pathway in the presence of the
mentioned androgens in AD. The special isoforms of
PKC like PKCa and PKCe can work directly on a-
secretase; hence, they can trigger AB degradation in the
brains of PKCe transgenic mice that express
amyloidogenic variants of human APPI?. PKC both

Testosterone DHT

directly phosphorylates tau and indirectly causes the
dephosphorylation of tau by phosphorylating and
inactivating GSK-3B°4.  Tau protein has been
recognized as a major neuronal MAP, which promotes
MT pol}/merlzation and stabilizes MT polymer
structure! MTs are composed of two subunits, a-
and Btubulm with high negative charges at the C-
terminal end®. The interaction between MT and tau
is  regulated through  phosphorylation  and
dephosphorylation on tau protein by several enzymes
such as kinases like PKC, GSK3f, and
phosphatases®®®'®). GSK3B is the primary protein
kinase that regulates tau phosphorylation in brain™*.
GSk3pB regulates several signaling pathways in tau
pathology and plays an inhibitory role in AD
pathophysiology and cell division process. PKC
activation lessens tau hyperphosphorylation by
inhibiting GSK3p; the inhibition of GSK3p is
transpired by phosphorylation in serine 9“4, Reducing
APB1-42 production using PKCe, the most important
enzyme involving in AD, can lead to the inhibition of
GSK-3B and consequently, the reduction of tau
phosphorylation and neurofibrillary tangles. PKC-a
partakes in tau phosphorylation, which is controlled by
the intracellular level of cAMPM™?. The alterations in
PKCy contribute to deficits in hllopocampal—mediated
memory in the aged individuals™®! (Fig. 5).

sAPPo

s

y-secretase

a-secretase

Fig. 5. Effect of androgens on induction of non-amyloidogenic pathway of AD. AICD, APP intracellular domain. P stands for
phosphorylated protein, and (+) in the image describes the activated effect on the group. Hyperphosphorylated tau containing several
phosphate groups attached to the tau protein has been shown. PKC leads to activate the polymerization and depolymerization of MT
protein via hyperphosphorylated tau in the normal conditions; therefore, it can help the electron transfer in the nervous systems and

create action/potential in the synaptic ends.
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To conclude, we have focused on learning and
memory process, in which androgens play significant
regulatory roles. Overall, androgens expression levels
are reduced throughout the lifetime, and their
deficiency can lead to a number of behavioral and
functional alterations, including cognition and memory
impairment. Additionally, PKC modulates several
signaling pathways dependent on memory process. In
particular, PKCo and PKCe directly regulate a-
secretase induction, while indirectly modulate o-
secretase through ERKZ1/2 activation by PKC. Tau
proteins phosphorylation is also induced via its binding
to PK; therefore, phosphorylated tau is dissociated
from MT, while the formation of AB;.4, is promoted by
GSK3, CDK5, MARK, and ERK1/2. However, GSK-
3B could be inhibited directly or indirectly through
PKC pathways or Api.4, lower production via PKC.
Although androgens role in cognition represents
contradictory results, DHEA-S has been found to be
negatively correlated with phosphorylated tau protein
concentration and AP oligomers levels. Furthermore,
testosterone treatment declines the tau hyper-
phosphorylation, while androgens seem to promote
non-amyloidogenic APP processing. Besides, deficient
PKC signaling pathways are associated with lower
expression rate of RACK1 scaffold protein, which
leads to age-dependent decrease of immune response
function. In addition, DHEA reduction is correlated
with cortisol (the negative regulator of RACKZ1),
DHEA ratio increase and RACK1 decline, for which
research has suggested that the DHEA injection may
restore RACK1 expression levels. PKC regulates
CREB activity related to MAPK/ERK signaling
pathway in hippocampal neurons. Indeed, CREB
activity and its increased phosphorylation are
suggested to be AR- and PKC-dependent. Neurons
death in PD has also been attributed to testosterone
activity and its correlation with PKC, which is
processed by caspase-3 activation. Studies have
evidenced the fundamental correlation of androgens
and PKC, which may eventually serve as a potential
treatment for memory impairment. Further experiments
are recommended to reach accurate and consistent
results.
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