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ABSTRACT 
 
Coagulation factors belong to a family of plasma glycosylated proteins that should be activated for appropriate 
blood coagulation. Congenital deficiencies of these factors cause inheritable hemorrhagic diseases. Factor VII 
(FVII) deficiency is a rare bleeding disorder with variable clinical symptoms. Various mutations have been 
identified throughout the F7 gene and can affect all the protein domains. The results of previous experiments 
have partly revealed the correlation between genotype and phenotype in patients with FVII deficiency. 
Nevertheless, each particular variant may affect the coagulative function of FVII, mainly via altering its expression 
level, extra-cellular secretion, tissue factor binding affinity, or proteolytic activity. The pathogenicity of the 
variants and molecular mechanisms responsible for clinical symptoms in patients with FVII deficiency should be 
characterized via in silico and in vitro, as well as in vivo functional studies. This review has highlighted the most 
important functional studies reported on F7 gene variants, including relevant reports regarding Iranian FVII 
deficiency patients. DOI: 10.29252/ibj.23.3.165 
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INTRODUCTION 
 

hrombosis and coagulation factors  
In the coagulation process, which ultimately 

prevents bleeding, various mechanisms such as 

vascular contraction, platelet aggregation, and clot 

formation are activated
[1,2]

. The coagulation cascade 

(Fig. 1) is triggered by the tearing of vessel and 

progress through complex sets of biochemical 

reactions that are carried out by blood coagulation 

factors
[1-3]

. Coagulation factors belong to a family of 

plasma glycosylated proteins that should be activated 

for appropriate blood coagulation
[4]

. In general, 

coagulation factors are present in plasma at very low 

levels and are dependent on vitamin K for their 

activity
[5]

. Congenital deficiencies of these factors 

cause inheritable hemorrhagic diseases, which are 

often rare
[6]

. Defective function of coagulation factors 

 

can be quantitative or qualitative. In qualitative type, 

although functional tests may indicate coagulation 

factor deficiency, antigen detection assays show that 

their plasma level is normal or increased
[7]

. The main 

consequence of coagulation cascade is the formation of 

active substances that are called prothrombin 

activators
[8]

. The prothrombin activators catalyze the 

conversion of prothrombin to thrombin, which converts 

fibrinogen into fibrin fibers. Eventually, fibrin fibers 

trap the platelets and form the clot. The prothrombin 

activators are formed in two ways that interact with 

each other: (1) the extrinsic pathway that starts with 

damage to the vascular walls and their surrounding 

tissues and (2) the intrinsic pathway that starts inside 

the blood. Factor VII (FVII) plays a pivotal role in the 

commencement of blood coagulation through the 

extrinsic pathway
[9]

. 

 

 

T 

 [
 D

O
I:

 1
0.

29
25

2/
ib

j.2
3.

3.
16

5 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

01
9.

23
.3

.7
.1

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

25
-0

7-
03

 ]
 

                             1 / 10

http://dx.doi.org/10.29252/ibj.23.3.165
https://dor.isc.ac/dor/20.1001.1.1028852.2019.23.3.7.1
http://ibj.pasteur.ac.ir/article-1-2709-en.html


Functional Studies on FVII Gene Defects    Shahbazi & Mahdian 

 

 
166 Iran. Biomed. J. 23 (3): 165-174 

 

 

 
 

Fig. 1. Schematic display of the coagulation cascade. Coagulation factors are mainly enzymes with protease catalytic activities. 

Upon activation of initial coagulation factors such as FXII (intrinsic pathway) or FVII (extrinsic pathway), consecutive processes are 

triggered, which ultimately convert fibrinogen to fibrin clot and maintain hemostasis.  Tissue factor plays a pivotal role in the extrinsic 

pathway via converting FVII to its active form FVIIa. 

 

 

Coagulation factor VII  

FVII is a serine protease produced in the liver and 

presents in plasma as a zymogen at a concentration of 

10 nM (0.5 µg/ml)
[10-12]

. This vitamin K-dependent 

glycoprotein is circulating in plasma in two forms, 

mainly as inactive single-chain zymogen and partly as 

active form (FVIIa) consisted of heavy and light 

chains. Following vascular injury, FVII is converted 

into its active form and binds to the tissue factor (TF) 

to form the TF/FVIIa complex. The conversion of FVII 

to FVIIa occurs by breaking the peptide linkage 

between amino acids Ile153 and Arg152
[13]

. TF 

consists of phospholipids derived from tissue 

membranes plus lipoprotein complexes of damaged 

tissue. The TF/FVIIa complex acts as an enzyme on 

Factor X (FX) and converts it into its active form 

(FXa) in the presence of calcium ion. FXa is rapidly 

combined with tissue phospholipids, a part of TF, or 

released from the platelets
[14]

. Together with FV, they 

form the prothrombin-activating complex. Then this 

complex converts prothrombin into thrombin in the 

presence of calcium ion, and the coagulation process 

proceeds
[3,15]

. 

 

Factor VII biosynthesis and functions 

The coagulation factors (FVII, FIX, and FX) and 

prothrombin have almost the same protein structure 

characteristics. All of these proteins have a signal 

peptide that is necessary for their transmission to the 

endoplasmic reticulum. They also contain a pro-

peptide sequence that carries out vitamin K-dependent 

γ-carboxylation in mature protein and is cleaved after 

transferring to Golgi's system
[16,17]

. The FVII protein 

also contains two epidermal growth factor-like (EGF-

like) domains and an activation peptide with a 

glycosylated asparagine that provides a proteolytic 

cleavage site. The catalytic regions exhibit the serine 

protease activity, which leads to various functions of 

the protein
[18]

. The role of FVII in the pathogenesis of 

various cancers has extensively been studied
[19-24]

. 

Though the molecular pathogenesis of the increased 

expression of FVII by cancer cells has not precisely 

been described, the ectopic expression of FVII may 

promote the division, migration, and invasion of cancer 

cells. This process seems to be mainly mediated 

through the TF/FVIIa/PAR2 complex
[25]

. Recently, it 

has been shown that FVII is an important target of 

androgen receptor in breast cancer cells. That study 

indicated that the androgen receptor binds to the F7 

promoter near the ATG translation start codon, which 

suggests that the androgen receptor directly activates 

F7 gene expression in cancer cells
[19]

. 

 

Factor VII deficiency 

The deficiency of FVII was first described in 1951. 

The disease is known as a hereditary bleeding  

disorder with prevalence of 1 in every 300,000- 

500,000   individuals
[7,26]

.   Children    with   congenital    
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Fig. 2. Schematic illustration of factor VII gene (F7) and its encoded protein (FVII). Upper: F7 gene contains nine exons that 

encode different parts of the protein. Exons 1a and 1b, pre-propeptide; exons 2 and 3, G1a domain; exon 4, EGF-1 domain; exon 5, 

EGF-2 domain; exons 6 and 7, activation region; exon 8, serine protease catalytic domain. Lower: Mature FVII is a 50-kDa protein of 

406 amino acids. Upon contact with tissue factor exposed by vascular injury, FVII is cleaved into its two-chain active form (FVIIa), 

mainly by factor Xa. The light chain of FVIIa comprises a Gla domain and two EGF domains, whereas the heavy chain contains the 

serine protease catalytic domain, which is structurally homologous to those of the other coagulation factors[63,71].  

 

 

FVII deficiency may be diagnosed following a 

gastrointestinal tract or central nervous system 

bleeding in the first six months of their life
[27,28]

. 

Patients with severe FVII deficiency may experience 

joint and muscle bleeding, easy bruising, and post-

operative hemorrhage. Bleeding can also occur 

spontaneously in the mouth, the nose, the genitals, and 

urinary tract
[26]

. Furthermore, the affected women often 

suffer from severe menorrhagia
[29]

. In sum, FVII 

deficiency is a rare bleeding disorder with  

variable clinical symptoms
[28-37]

. However, in many 

cases, there is no direct correlation between the factor 

plasma levels and the severity of the disease 

symptoms
[28-30,32,38]

. In fact, some people with very low 

levels of FVII may demonstrate mild symptoms. In 

cases of very low factor levels, the clinical 

manifestation of the disease may be similar to 

hemophilia symptoms. However, the patients are 

generally treated with the administration of 

recombinant FVII
[33,39,40]

. 
 

Factor VII gene (F7) 

The F7 gene is located on chromosome 13 (13q34). 

This gene has nine exons and eight introns, which, 

besides the gene promoter region, composes a 12-kb 

gene locus near the telomeric region of the 

chromosome
[41]

. Two other genes (i.e. FX and PROZ) 

which encode vitamin K-associated proteins, are also 

located close to the F7 gene locus. The complete 

sequence of this gene was reported in 1987 by O'Hara 

et al.
[42]

. The length of the introns in this gene varies 

between 68 nucleotides and 2.6 kb, while the gene 

exons are between 25 nucleotides and 1.6 kb. The 

exons 1a, 1b, and a part of the exon 2 join together and 

encode the pre-pro leader sequence. The presence or 

absence of exon 1b assigns the pre-pro leader with a 

 

size of 60 or 38 amino acids, respectively. Both 

variants are naturally occurring in humans, although 

the lack of exon 1b is more common
[43]

. The rest of the 

exon 2 plus the remaining exons encode the mature 

protein. Regardless of the transcribed alternate exons, 

the mature FVII protein in the plasma is a single chain 

protein with a molecular weight of 50 kDa that 

contains 406 amino acids. In contrast, FVIIa has a light 

chain (gamma carboxy-glutamic acid domain and two 

other EGF-like domains) and a heavy chain with 

catalytic activity (Fig. 2). The promoter and regulatory 

regions of this gene have extensively been  

studied
[44-49]

. The main transcription initiation region is 

located at [-57CCCGTCAGTCCC-46] upstream of the 

transcription starting point. The binding region for the 

transcription factor HNF4, which affects the expression 

of other genes in the liver, spans bases from -63 to -58 

(Fig. 3). There is also a gene locus on chromosome 8 

that may play a role in regulating FVII levels.  

The presence of this locus was suggested by  

observing FVII deficiency in patients with trisomy  

of    chromosome 8.   Eventually,  Fagan et al.
[50]

  have  
 

 
 

Fig. 3. Structure of F7 gene promoter region. The region 

spanning [-58 to -63] bases on F7 promoter has been assigned as 

HNF-4 binding site, while the [-94 to -101] region provides the 

binding site for transcription factor Sp1. The -94C>G and the -

61T>G homozygous promoter mutations are known to cause 

severe FVII deficiency by impairing the binding of the Sp1 and 

HNF-4 transcription factors, respectively[44]. 
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assigned this regulatory locus on 8p23.2-p23.1 

chromosomal region. 
 

F7 gene mutations 

According to the reported data (http://www.factorvii. 

org), the F7 gene harbors more than 200 different 

variants. These variants include missense, nonsense, 

small insertion/deletion, and splice site mutations, 

which may affect every region of the gene (Fig. 4A), 

and the mutations identified throughout the F7 gene 

can affect all the protein domains (Fig. 4B). Although 

F7 mutations are very heterogeneous, some are 

common in particular populations
[51]

. On the other 

hand, many patients with a specific mutation in the F7 

gene may have no significant clinical manifestation. 

Currently, comprehensive information regarding these 

mutations is available at the FVII gene variants 

database (http://www.factorvii.org)
[26]

. Point mutations 

are the main causes of FVII inherited defects, where 

missense mutations are the most frequent variants. 

Exon 8 is the largest exon of the gene and harbors a 

large number of mutations. Like other hereditary 

coagulation defects, such as FIX deficiency 

(hemophilia B), many mutations occur in CpG hot spot 

regions. To date, frequent examples of such mutations 

have been described (R79Q/W, 6071G>A, A244V, 

R304Q, and T359M)
[52]

. In a comprehensive study on 

717 patients in Latin America and Europe, 131 

mutations were observed in 73 homozygotes, 145 

heterozygote compounds, and 499 heterozygotes 

patients, of which 71% of homozygous and 50% of 

compound heterozygotes cases were symptomatic. 

Interestingly, despite the observation of FVII 

deficiency symptoms in some patients, almost 10% of 

the patients had no mutations in the screening 

analysis
[30]

. Whether the FVII deficiency is due to the 

defects in genes other than F7 has yet to be described. 

It is also believed that the plasma levels of the factor 

are regulated by F7 gene polymorphisms. However, 

their effect on the severity of patients’ clinical 

manifestation is not clear. In general, the most severe 

cases are either homozygous or compound 

heterozygous with FVII: C levels less than 2.0% of 

normal, but occasionally, heterozygous carriers display 

hemorrhagic symptoms that can be severe in rare cases. 

For instance, a heterozygous 19-year-old patient with 

severe spontaneous intracranial bleeding was reported; 

the patient had no previously recorded hemorrhagic 

symptoms
[53]

. 
 

Functional studies on F7 gene variants 

Up to now, various functional studies
[48,54,55]

 have 

been conducted to show the effects of F7 gene variants, 

mainly on the secretion rate, ligand binding, and 

coagulation activity of the protein (Table 1). These 

studies are often based on the in vitro expression of 

mutant recombinant FVII in mammalian cells in 

culture. Their results partly revealed the correlation 

between the genotype and phenotype in the patients 

with FVII deficiency. Nevertheless, each particular 

variant may affect the coagulative function of FVII, 

chiefly via altering its expression level, extracellular 

secretion, TF-binding affinity, or proteolytic activity. 

Functional analysis of the F7 mutations has 

demonstrated that the binding of FVII to TF occurs 

through a large interface between the two proteins, 

which comprise all four FVIIa domains and two TF 

extracellular domains
[54,56]

. The Gla domain binds to 

the C-terminal membrane domain, while EGF1 

interacts with both domains of TF. EGF2 and the FVII 

protease domains form a merged surface interacting 

with the N-terminal of the TF. Although the 

mechanism by which TF increases the catalytic activity  
 
 

 

     
 

 

       
 

Fig. 4. (A) The mutational spectrum of F7 gene including 

different types of variants. Point mutations and gene  

deletions comprise more than 90% of these variants. 

Interestingly, most of the point mutations in coding sequence of 

the gene are missense. (B) Domains of the FVII protein affected 

by the variants in the corresponding F7 gene regions. Exon 8, 

which encodes the largest domain of the protein (i.e. serine 

protease catalytic domain), harbors most of the gene variants 

identified so far. 
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    Table 1. Summary of the most important functional studies on the FVII molecular defects subsequent to F7 gene variants detected in FVII 

  deficiency patients 

Gene/protein region Variant 
Clinical 

pathogenicity 

Functional  

defect 
Method Ref. 

SPCD G420V PA LS ELISA/CM 
[55] 

     
 

SPCD p.I289del PA LS ELISA/CM 
[55] 

     
 

SPCD A354V-p.P464Hfs LP LS ELISA/CM 
[55] 

     
 

SPCD H348R PA LS ELISA/FM 
[67] 

     
 

SPCD S282R PA LS ELISA/FM 
[67] 

     
 

EGF-like-2 domain C91S PA LCA IHC/ELISA/CA 
[62] 

     
 

SPCD Cys329Gly PA LCA ELISA/CA 
[63,65] 

     
 

EGF-like-1 domain R79Q PA LTB ELISA/CA 
[57,58] 

     
 

SPCD R152Q PA LCA ELISA/CA 
[58] 

     
 

Promoter -2989C/A LP HE FACS 
[48] 

     
 

Promoter -670A/C PA LE FACS 
[48] 

     
 

Promoter -630A/G PA HE FACS 
[48] 

     
 

Promoter -402G/A PA HE FACS 
[48] 

     
 

Promoter -401G/T LP HE FACS 
[48] 

     
 

Promoter -323ins0/10 LP LE FACS 
[48] 

     
 

Promoter -122T/C LP LE FACS 
[48] 

     
 

Intronic (IVS6) IVS6 + 1G>T PA LE Western blot/ELISA 
[72] 

      

3’ UTR g.11293_11294insAA 
Conditional 

pathogenicity 

Low mRNA  

expression ELISA/CA/qRT-PCR 
[73] 

      

SPCD Arg277Cys LP 
Low secretion/ 

moderate activity ELISA/CA/qRT-PCR 
[73] 

      

SPCD Arg353Gln Benign None ELISA/CA/qRT-PCR 
[73] 

     
 

Gla domain  Ser23Pro PA LTB Crystallography/CA 
[54] 

      

EGF-like-2 domain Cys135Arg PA 
Disrupted disulfide  

bond Crystallography/CA 
[54,74] 

      

SPCD Arg247Cys PA LTB Crystallography/CA 
[54] 

     
 

SPCD Ser282Arg PA LTB Crystallography/CA 
[54] 

     
 

SPCD Ser363Ile PA LTB Crystallography/CA 
[54] 

     
 

SPCD Trp364Cys PA LTB Crystallography/CA 
[54] 

     
 

SPCD Trp364Phe PA LTB Crystallography/CA 
[54] 

      

SPCD Pro303Thr PA LTB 
Crystallography/CA/ELISA/ 

solid-phase binding assay 
[54,60] 

      

Gla domain  Phe24del PA LTB Crystallography/CA 
[56] 

     
 

EGF-like-2 domain Arg110Cys PA IPF Clotting assay/EIA 
[18] 

     
 

EGF-like-2 domain Asp123Tyr PA IPF Clotting assay/EIA 
[18] 

      

Promoter -94C>G PA Low Sp1 binding 
Reporter gene expression assay/ 

electrophoretic mobility shift assay 
[75] 

SPCD, serine protease catalytic domain; PA, pathogenic; LP, likely pathogenic; LS, low secretion; LCA, low coagulative activity; LTB, low TF 

binding; IPF, impaired protein folding; HE, high expression; LE, low expression; CM, confocal microscopy; FM, fluorescence microscopy; 

CA, coagulation assay; Ref. reference  
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of FVIIa is not well known, previous studies have 

indicated that different F7 gene variations can change 

this interaction and decrease the coagulation activity of 

the protein
[54]

. For instance, the R79Q mutation has no 

effect on the expression of the FVII protein but 

decreases its TF binding affinity
[57,58]

. Protein structure 

analysis by X-ray crystallography has displayed that 

the region that contains this residue plays an important 

role in the interaction of EGF1 with TF
[54]

. In the same 

way, the Q100R mutation may affect the protein 

expression and cause defective FVIIa/TF complex 

formation
[59]

. Peyvandi et al.
[60]

 have studied 

Pro303Thr variant in an Iranian patient with relatively 

severe hemorrhage. The functional study of this 

mutation was performed using in vitro expression of 

the defective FVII protein, followed by biochemical 

coagulation tests. The mutation was induced by site-

directed mutagenesis in exon 8 of F7 gene, and the 

mutated protein was expressed in mammalian cells. 

Quantitative tests have suggested that the expression 

and the secretion of the mutated protein were normal. 

However, further experiments have revealed that 

impaired binding of FVII to the TF diminishes its 

proteolytic activity
[60]

 . It has been reported that mutant 

FVII protein with R152Q mutation has no detectable 

activity. This mutation occurs at the proteolytic 

cleavage site required for the conversion of FVII into 

FVIIa. Thus, the mutation affects the protein activity 

by inhibiting the activation of FVII serine proteases
[58]

. 

In another functional analysis, although the F328S 

variant led to partially diminished TF binding, the 

protein was not able to activate FX, possibly due to a 

defective substrate binding site
[61]

. 

Recently, we have reported the FVII functional 

defects consequent to C91S mutation in a homozygote 

patient with mild bleeding symptoms
[62]

. We expressed 

the mutant protein in CHO-K1 cells in vitro and 

assessed its properties using coagulation assays and 

immunocytochemistry. In spite of increased secretion 

of FVII in the culture medium of the cells expressing 

the mutant FVII, C91S substitution severely affected 

the coagulant activity of FVII. The C91S substitution 

was first reported in a British patient with FVII 

deficiency
[63]

. The mutation occurs in the exon 5 of F7 

gene and alters residue 91 in EGF2 (EGF-like 2) 

domain of the protein. The EGF-like and the serine 

protease domains are necessary for FVII and TF 

interaction
[64]

. Previous studies have also shown that 

EGF2 mutations dramatically impair FVII coagulant 

activity by affecting protein-protein interactions
[18,54]

. 

The review by Peyvandi et al.
[54]

, which included 21 

families with FVII deficiency, has identified nine new 

missense mutations in the Gla, EGF-2, or serine 

protease domains (Table 1). They analyzed the protein 

crystal structure to describe the functional effects of 

these variants on FVIIa and FVIIa/TF complex. In a 

similar study, Millar et al.
[63]

 have evaluated 23 new 

mutations in 38 British patients with FVII deficiency. 

They also used crystal structure analysis and molecular 

modeling of the FVIIa/TF complex to determine the 

variants pathogenicity. In a study on Italian patients, 

D'Andrea et al.
[18]

 have reported a 6-year-old female 

with FVII deficiency who was identified as compound 

heterozygote for Asp123Tyr and Arg110Cys 

mutations, both of which in the EGF-2 domain. In 

order to evaluate the importance of the EGF-2 motif 

and the pathogenicity status of the variants, a 

functional study was performed on the both mutations. 

When the recombinant variants were expressed in 

mammalian cells, FVII:C and FVII:Ag were assessed 

in the cell lysate and culture medium of the host cells. 

They observed that these mutations decreased the 

intracellular accumulation and the secretion rate of 

FVII protein. They concluded that the mutations in 

EGF-2 domain could affect FVII processing, stability, 

or secretion
[18]

. Also, the effect of Gly97Cys and 

Gln100Arg mutations on FVII secretion and function 

was studied. These mutations that occur in EGF-2 may 

alter the intracellular localization and the secretion of 

the protein. To evaluate the pathogenic outcome of 

these variants, COS-1 and CHO cells were transfected 

with expression vectors containing wild type and 

mutated alleles. The host cells were examined by 

immunostaining to reveal intracellular localization of 

FVII protein. The results showed that the mutations in 

EGF-2 domain can alter the localization pattern as well 

as the secretion rate of FVII protein
[18]

.  

Cysteine residues play an important role in FVII 

function, in particular, Cys329 that is strongly 

preserved in the serine proteases is critical for TF 

binding and, thus, the catalytic function of FVIIa. 

Disruption of disulfide bond between Cys329 and 

Cys310 dramatically affects the structure and the 

function of the protein
[65]

. So far, numerous patients 

with Cys329Gly mutation and a patient with 

Cys329Arg have been reported
[63,66]

. The molecular 

mechanisms involved in the pathogenesis of FVII 

deficiency consequent to the mutations in the serine 

protease catalytic domain have widely been studied in 

vitro. In a study by Chollet et al.
[55]

, CHO-K1 cells 

were transiently transfected to describe the 

mechanisms by which these three different mutations 

reduce the levels of FVII. They revealed impaired 

secretion of the defective FVII protein in the culture 

medium. These results were consistent to the low FVII 

levels measured in patients carrying these mutations. In 

another study, we performed a functional study on 

H348R and S282R mutations detected in compound 
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heterozygous status in a FVII-deficient patients
[43,67]

. 

The both variants could lead to lowered secretion of 

the mutant proteins and undetectable coagulation 

activity in vitro. 

The expression of chimeric FVII/GFP proteins has 

been analyzed to identify the effects of nonsense 

mutations on the biosynthesis and secretion of FVII. 

Further studies have been conducted to investigate the 

expression features of F7 promoter variants. The 

mutations in the promoter consensus sequence of F7 

gene (-94C> T; -61T> G; -55C> T) affect the binding 

of transcription factors that are important for the 

expression of FVII. These three mutations have been 

studied with the help of reporter genes in transfected 

cells. The transcripts containing the reporter gene along 

with the mutated upstream sequences of the F7 gene 

showed decreased expression rate compared to the 

wild-type gene. It has also been shown that 94C>T 

mutation occurs at SP1 binding site and -61T>G 

mutation at HNF4 binding sequence. The mutation at  

-55C>T also caused a significant reduction in the 

binding affinity of HNF4 to this sequence. The severe 

clinical phenotype observed in the patients carrying 

these mutations can be explained by reduced binding 

efficacy of the transcription factors for the F7 

promoter
[68]

. 

By developing advanced in silico analysis methods 

and genotype-phenotype association studies, more 

comprehensive data on the effects of F7 gene variants 

on the function of FVII protein are being 

provided
[69,70]

. Tiscia et al.
[70]

 have described molecular 

consequences related to novel variants detected in FVII 

deficiency patients by using the bioinformatics 

software, including PROMO, SIFT, and PolyPhen-2. 

Structural characteristics of the mutant FVII proteins 

have also evaluated by in silico functional analysis on 

SPDB viewer software. The data of an in silico study 

predicted a possible damaging effect of the Cys400Ser 

missense mutation on the conformation of FVIIa via 

disrupting the Cys400-Cys428 disulfide bond. Very 

recently, the association of FVIIa levels with the 

incidence of coronary heart disease and the mortality 

rate of ischemic stroke has been assessed by Olson et 

al.
[69]

. They performed a genome-wide single 

nucleotide polymorphisms association analysis for 

FVIIa in European-Americans (n = 2410) patients and 

reported that rs1755685 in the F7 promoter region on 

chromosome 13 was the most significantly relevant 

single nucleotide polymorphism to FVIIa levels. 

Interestingly, a functional in vitro site-directed 

mutagenesis study has previously demonstrated that 

allelic variants rs1755685 may increase F7 gene 

expression
[48]

. Overall, various functional analysis 

methods may be implemented for the evaluation of 

each variant in F7 gene. However, the best choice 

depends on the nature of the variant, the genotype-

phenotype correlation in the patients, as well as 

previous studies on the population of interest. 

Though the mutational spectrum of F7 gene has been 

substantially described, the genotype-phenotype 

correlation in patients with FVII deficiency and the 

functional defects of the mutant FVII protein have yet 

to be precisely elucidated. This attempt may be more 

complicated in symptomatic patients with heterozygote 

variants. The pathogenicity and clinical severity of 

each particular F7 gene variant should be evaluated 

considering overall data provided by in vitro and in 

silico functional analyses, as well as the presence of 

other interfering variants throughout the patients’ 

genome. 
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