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ABSTRACT

The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal
antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final
product through the development stage. An important step in QbD is determination of the main quality
attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern,
charge variants, aggregates, and low-molecular-weight species could be significantly altered. Here, we provide
an overview of how cell culture medium components affect the main quality attributes of the mAbs. Knowing
the relationship between the culture media components and the main quality attributes could be successfully

utilized for rational optimization of mammalian cell culture media for industrial mAbs production.
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INTRODUCTION

to establish a manufacturing line in

biopharmaceuticals. Although a significant shift
in productivity is the main goal of process
development, achievinq appropriate quality attributes is
also of great concern™. Quality by design (QbD) is a
new approach to develop and to manufacture
pharmaceutical products. QbD guarantees product
quality and ensures that a consistent product with
preferred quality attributes is generated®*]. Regulatory
agencies encourage its application in the manufacture
of all new pharmaceuticals containing biological
products®*.

The cell line and its recombinant DNA construct,
culture media, and process conditions are three
important parameters that influence recombinant
protein quality properties in the manufacture of
biopharmaceuticals. The culture media and the control
of process conditions are very important in process
development®®. In fact, the cell metabolism directly

Process development is a state-of-the-art method
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depends on the culture conditions, including the pH!",
the temperature®®, the oxygen tensionl”, the CO,
amount in the culture broth®), and also the mode of
processing, i.e., perfusion or fed-batch mode™.
Diverse metabolic outcomes states that result from
modifications in these culture parameters might
produce proteins with altered quality attributes.
Many review articles have been published in this
field with a focus on the cell line™* and cell
culture parameters™™***!. Moreover, with concentration
on the regulation of certain media constituents and
by supplementing the medium with specific co-factors,
the glycosylation profile®™ the charge variants™®,
the aggregation amount™® and the level of
low-molecular-weight (LMW) variants™® can be
controlled.

At this time, monoclonal antibodies (mAbs) are the
main products in the pipeline of the biopharmaceutical
industry. Numerous studies have reported different
impacts of glycosylation, charge variants, aggregates,
and fragments on the biological activity and
pharmacokinetics™® 3. The purpose of this review is to
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discuss the main quality attributes of mAbs that can be
changed directly by culture conditions, and to review
the culture conditions and culture media components
that affect these attributes.

Glycosylation

Importance

Glycosylation is a complicated process of the
attachment of oligosaccharides to the polypeptide
backbone of a protein, which occurs in the
endoplasmic reticulum and Golgi apparatus. There are
two main kinds of glycosylation®!: asparagine (Asn)-
linked glycosylation or N-linked glycosylation, and
serine/threonine-O-linked glycosylation. In mAbs, the
Asn-linked glycosylation is the most common®!. The
N-glycans are linked to the two conserved Asn
residues (Asn 297) in the CH2 domain of the Fc

region®. The presence or absence of certain
oligosaccharides can affect mAb stability®®”), in vivo
efficacy™ !, antibody-dependent  cell-mediated

cytotoxicity (ADCC)¥"*! " complement-dependent
cytotoxicity (CDC) activities®™, pharmacokinetics®?,
clearance rate™, and immunogenicity™*?. Hence, the
precise control of glycosylation of mAbs is critical.

2-2-N-glycosylation types

In the endoplasmic reticulum, the oligosaccharide
chain is attached to the protein backbone and
consequently forms an oligomannose species through a
series of enzymatic reactions. In mammalian cells, the
glycoprotein undergoes further processing in the
Golgi***1. N-glycans can be classified into three
groups, which have a shared core comprising two N-
acetylglucoseamine (GIcNAc) residues and three
mannose types in a branched form (Fig. 1). The
different groups are:

1) The high-mannose (HM) type that comprises only
mannose residues attached to the core. While the
HM amount on the endogenous human IgG is
usually very low, the HM amount of the
recombinant mAbs can range from 1% to >20%.
Due to the quicker serum clearance rate of HM
glycans compared to other Fc-glycans, the
pharmacokinetic properties of these mAbs are
affected™®*4. Additionally, the HM glycoforms
are  concomitant with  enhanced ADCC
activity®***]. Therefore, the HM amount of mAbs
can be considered to be an important quality
attribute in the production process.

2) The complex type containing different kinds of
monosaccharide in their antennal region (Fig. 2).
Galactose amount may influence CDC, and the
sialylation amount may influence functionality or
inflammatory characteristics™. The lack of core-
fucosylation results in enhanced ADCCY. For
instance, non-fucosylated mAbs display fiftyfold
to thousandfold higher efficacy than their
fucosylated counterpartst®®,

3) The hybrid type, which has properties from both
HM and complex types attached to the core.

Glycosylation during cell culture

It is understood that differences in the N-linked
glycan profile can take place during the mAb
production processl”*®). The cell culture conditions
containing culture media elements, the accessibility of
the nucleotide sugar substrates, the expression amounts
of the enzymes involved in the attachment, and the
transformation of carbohydrate structures determine
the amount of antennarity and sialylation™*.

Manganese plays an important role in the
glycosylation pathway™*"*. As a co-factor of many
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Fig. 1. The schematic representation of the composition of different groups of N-glycans containing high mannose, complex, and

hybrid types.
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Fig. 2. The schematic representation of major N-linked glycoforms of mAb therapeutics. GO: asialo, agalactose, biantennary
complex (common core [Man3GIcNAc2] with terminal two GIcNAc residues), GOF: asialo, agalactose, biantennary complex, core
substituted with fucose, G1: asialo, mono-galactosylated, biantennary complex, G1F: asialo, mono-galactosylated, biantennary
complex, core substituted with fucose, G2F: asialo, galactosylated, biantennary complex, core substituted with fucose. G, galactose; S,

sialo (sialic acid)

enzymes, manganese controls the glycosylation
profile®®. It has been shown that increased nucleotide-
sugar precursors levels, comprising UDP (uridine
diphosphate)-Hex, ~UDP-HexNAc, and cytidine
monophosgphate-sialic acid, enhance the glycosylation
of mAbs*.

It has been shown that the glucose limitation in
culture medium can lead to a reduced UDP GIcNAc
availability™® which in turn results in glycosylation
heterogeneity!!. In a Chinese hamster ovary (CHO)
cell culture experiment, it was seen that the amount of
non-glycosylated antibody was correlated to the extent
of time the cells deprived of glucosel*?. In a different
study in fed-batch culture mode, with the human cell
line rF2N78, it has been shown that due to the lack of
glucose in the feed, nearly 44% of the product was
aglycosylated. No aglycosylated antibody was
expressed when glucose was fed throughout the
culture™®. There are reports that glucose and glutamine
(GIn) concentrations below 1 mM were harmful to
glycosylation®***! Also, variations in other cell
culture conditions such as dissolved oxygen, bioreactor
pH, ammonia, and shear stress, have been shown to
affect the glycosylation of therapeutic mAbs. Their
terminal galactosylation may be affected by such
variations™. The variable presence of terminal
galactose residues leads to the heterogeneity of
Rituximab glycosylation">“?]. The effect of Rituximab
terminal galactose residues on CDC activity originates

Iran. Biomed. J. 21 (3): 131-141

from the involvement of galactose residues in the
binding of Rituximab to complement C1q™®.
Therefore, the agalactose form of Rituximab is
considered as a serious impurity.

Analytical methods for the detection of mAb
glycosylation

Several analytical methods are used to analyze
glycosylation. Some of those are nuclear magnetic
resonance, mass spectrometry, high performance liquid
chromatography (HPLC), and capillary electrophoresis
(CE). The most frequently used quantitative tools to
analyze glycosylation are HPLC and CE. HPLC is used
either with fluorescence detection®®”*"! or with pulsed
amperometric detection®®" and CE with a laser-
induced  fluorescence  detector  for  various
fluorescently-labelled glycans®. In  HPLC-based
methods, in the first step, glycans are released by
chemical or enzymatic methods. The second step is the
separation of the released glycans and the sample
clean-up for the elimination of salts or denaturants.
Labelling with appropriate reagents is done to improve
detection. Then chromatographic techniques are used
to separate the released, purified, and labelled or
unlabelled glycans®®. The common separation-based
techniques that are used for the characterization of
mAb  glycoproteins are  reverse-phase HPLC,
hydrophilic interaction chromatography, and high-
performance anion-exchange chromatography (Fig. 3).
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Fig. 3. Workflow of glycan profiling, hydrophilic interaction chromatography (HILIC ), reverse-phase chromatography (RP), weak
anion exchange chromatography (WAX), mass spectrometry (MS), and fluorescence detector (FD). GO: asialo, agalactose, biantennary
complex (common core [Man3GIcNAc2] with terminal two GIcNAc residues), GOF: asialo, agalactose, biantennary complex, core
substituted with fucose, G1: asialo, mono-galactosylated, biantennary complex, G1F: asialo, mono-galactosylated, biantennary
complex, core substituted with fucose, G2F: asialo, galactosylated, biantennary complex, core substituted with fucose. G, galactose

Charge variants

Recombinant mAbs undergo chemical degradation
through diverse mechanisms comprising deamidation,
oxidation, isomerization, and fragmentation that result
in several charge variants and heterogeneity formation,
consequently modifying their pl values!®®.

Importance

The analysis of charge heterogeneity in the mAbs
characterization is essential because it provides
significant information about product quality and
stability™®". Charge variants with a relatively lower pl
are mentioned as acidic variants, while charge variants
with a relatively higher pl are mentioned as basic
variants (Fig. 4). Charge variants may significantly
influence the in vitro and in vivo properties of
antibodies. It has been revealed that they can change
the binding to proteins or cell membrane targets,
thereby affecting the tissue penetration, tissue
distribution, and  pharmacokinetics  of  the
antibodies?***®8. There is enough evidence in the
literature to recommend that the existence of acidic
species variants on mAbs can at least have an effect on
the resulting protein’s efficacy and function®*®. The
impacts of the charge variants depend highly on the
nature, site, and the amount of post-translational
modifications that cause the acidic and basic variants’
formation®®. Therefore, mAb charge variant levels

134

must be controlled exactly. At present, little
information is available on the control of these variants
using process parameters.

Charge variants types
Main species

The main peak of charge variant chromatograms
usually contains species with three kinds of usual post-
translational modifications: (1) Cyclization of the N-
terminal GlIn to pyroGlu, (2) elimination of the heavy
chain C-terminal lysine (Lys), and (3) glycosylation of
the conserved Asn residue in the CH2 domain with
neutral oligosaccharides. At the time of analysis, most
of the antibodies comprised N-terminal pyroGlu
instead of the original Gln, and therefore elute as the
main peak®*®4. Antibodies without any C-terminal
Lys are typically observed in the main species®®"].
The preserved Asn residue in the CH2 domain is
glycosylated. The core-fucosylated complex bi-
antennary structures with zero, one, or two terminal
galactose residues are the main glycoforms of
recombinant mAbs from mammalian cell cultures'®®!.

Acidic species

Charge variants with a relatively lower pl are termed
acidic variants. Table 1 summarizes the central reasons
for the formation of acidic species. The major cause of
acidic species formation, which has been extensively

Iran. Biomed. J. 21 (3): 131-141
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Fig. 4. The cation exchange chromatogram representing
different charge variants containing acidic, main, and basic
peaks. The chromatogram is related to a homemade monoclonal
antibody.

reported, is deamidation of Asn residues. Deamidation
happens both in the variable domains, particularly
complementarity-determining regions, as well as in the
constant domains. Deamidation of Asn residues in the
complementarity-determining regions always leads to
the acidic species formation(®*¢%"3.

Basic species

Charge variants with a relatively higher pl are basic
variants. Table 1 summarizes the main reasons for the
basic species generation. The major cause for the
generation of basic species is incomplete removal of
C-terminal Lys. Due to the further positive charges,

mADbs with heavy chain C-terminal Lys are more basic
than the main species!?636%68.74-78]

Charge variants during cell culture

The culture temperature displays important effects on
mAb charge variants’ distribution!’”. Reducing the
temperature and accelerating the temperature shift time
considerably decrease the acidic charge variant
amount™®™. In a study, Zhang et al.”®! showed that
decreasing the culture temperature enhanced the Lys
variant amount, which can be the main reason for the
increased basic variant amount, also they showed that
cultivations at sub-physiological temperatures in both
batch and fed-batch culture modes reduced the mAb
acidic variant levels, but the basic ones were enhanced.
It can be related to the reduction of carboxypeptidase B
transcription level. However, the mechanism by which
a temperature downshift decreases the acidic charge
variants’ level has not been clarified yet.

There was a straight correlation between the proline
amidation level and the basic peak level. Kaschak
et al.’¥ observed that the proline amidation was
sensitive to copper ion concentration in the culture
medium during cell culture. They showed that a higher
Cu®" ion concentration results in the higher level of
proline amidation. They also showed that if the copper
concentration increases and the zinc concentration
decreases in a chemically defined medium, the level of
C-terminal Lys variants will enhance™. Deamidation
modification in target mAb is decreased by glycerol
and sodium chloride®®™ and increased by iron
concentration enhancment®). Increase in the sodium
butyrate concentration in CHO cell culture medium
enhances mAbs basic charge variants®. Moreover, it
has been found that the supplementation of mammalian
cell culture media with the bioflavonoid chemical
family can decrease acidic species of recombinant
mAbs®,

Table 1. The modifications that form acidic variants

Number Acidic variants Basic variants
1 Deamidation N-terminal Glu
2 Non-classical disulfide linkage Isomerization of Asp
3 Trisulfide bonds Met oxidation
4 Glycation C-terminal Lys
5 High mannose Incomplete disulfide bonds
6 Sialic acid Amidation
7 Thiosulfide modification Succinimide
8 Cysteinylation Mutation from Ser to Arg
9 Non-reduced species Aggregates
10 Reduced disulfide bonds Fragments
11 Modification by maleuric acid Aglycosylation
12 Fragments Incomplete removal of leader sequence

Iran. Biomed. J. 21 (3): 131-141
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Analytical methods for the detection of mAb charge
variants

Several methods are wused to detect charge
variants of recombinant mAbs. These include
isoelectric ~ focusing gel electrophoresist’™ 748!

capillary isoelectric focusing electrophoresis!’®®],

and cation?™ ™78 and  anion®**1  exchange
chromatography.

Fragmentation and aggregation
Importance

Protein aggregation and fragmentation may lead to
immunogenicitz/, loss of biological activity, and other
side-effects®™ %, These modifications are host cell
line, clone, and process-dependent™ %2,

Fragmentation

Fragmentation is a common type of degradation and
can be attributed to the disruption of a covalent peptide
bond. It may take place spontaneously or by enzymatic
reaction®. To evaluate the purity and integrity of the
target protein, it is necessary to monitor the mAbs
fragmentation as a critical quality attribute. The
fragmentation pattern of mAb denotes a fingerprint of
stability and production consistency.

Aggregation

In the manufacture of therapeutic proteins,
aggregation is a common problem. Protein aggregates
can be categorized in several ways, including
soluble/insoluble, covalent/non-covalent, reversible/
non-reversible, and native/denatured™®**%! These
structural changes are significant because they can
cause a loss of activity of the intact proteins.
Furthermore, aggregation and misfolding can induce a
new epitope presentation, leading to an adverse
immune response®®®l. The control and avoidance of
aggregation in the manufacturing process are needed
because aggregates affect drug performance and
safety!®" %!,

Aggregate formation during mAb manufacturing
processes
Physicochemical stresses, such as changes in the
osmolality and pH of the medium, or changes in the
culture temperature, protein concentration, oxygen and
shear forces can aggregate the secreted proteins®* %),
Stresses to the protein, such as freezing contact with
air, or interactions with metal surfaces, may lead to
undesired post-translational modification, which result
in aggregates formation. Mechanical stresses may lead
to protein aggregationt®*%?. Osmolytes in the form of
small organic components, such as sugars, polyols, and
amino acids help as chemical chaperones to stabilize
. - [103-105
proteins and stop aggregation .
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Fragmentation during cell culture

Fragmentation may occur because of the action of
proteases released by cells into the cell culture
supernatant  during  the  protein  production
processl®1%%7 - According to several reports, the
culture media components have different effects on
product fragmentation. Trace elements, including
manganese, zinc, and cobalt, decrease LMW
formationt®®  while copper increases the LMW
formationt*>®°!. Also, other media components, such as
EDTAM8  and  cysteine™  decrease  product
fragmentation.

Aggregation during cell culture

The control of the produced aggregates level during
the cell culture process is possible. This control is
accomplished by carefully choosing the proper cell
line and improving cell culture conditions, such as
media components that affect media osmolality and
conductivity, feeding strategy, temperature, and
pHE®L A lower quantity of aggregates in the secreted
protein was observed when media pH and osmolarity
were increased in cells cultured in a hollow fibre
bioreactor™ . Cromwell et al.'® studied the effect of
cell culture temperature on aggregate formation during
the culture. They indicated that the higher levels of
aggregates were observed when the protein was held in
the culture medium at a high temperature for a longer
time. Different effects of media components on product
aggregation have been reported. Different reducing and
oxidizing substances containing glutathione, cysteine,
and copper decrease the protein aggregate formation in
CHO cell culture harvests™. Sodium chloride also
decreases the aggregate amountt**!.

Analytical methods for the detection of fragmentation
and aggregation of mAbs

The analytical methods used to detect fragmentation
and aggregation can be divided into two groups based
on their separation mode: (1) The methods in which the
separation is based on the size of the molecule, such as
size-exclusion  chromatography, sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, and CE
with SDS. (2) The methods in which the separation is
based on the chemistry of amino acid side chains such
as cation exchange chromatography. While the
mentioned methods are usually used to monitor and
quantify protein fragmentation and aggregation, the
identification of the exact cleavage site is performed
using mass spectrometry!**#**3,

Here, we explained the main quality attributes of
recombinant mAbs, which can be altered during cell
culture media optimization. In cell culture media
optimization, the challenge is to increase the yield with

Iran. Biomed. J. 21 (3): 131-141
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the desired quality of the product by the addition of
appropriate components at the correct concentration.
Published data show that quality engineering could be
performed by media design which is a rational strategy
to considerably control the main quality attributes and
function of mAbs. Therefore, to reach a recombinant
mAb with the desired quality, the analysis of main
quality attributes by appropriate analytical methods
during the process development is necessary and
inevitable.
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