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ABSTRACT 
 
Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for 
biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, 
most of which are under clinical development. In spite of significant improvements such as cell line engineering, 
introducing novel expression methods, gene silencing and process development, expression level is unpredictable 
and unstable because of the random location of integration in the genome. Site-specific recombination 
techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more 
importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant 
protein production by specifically inserting a vector at a locus with specific expression trait. The present review 
focused on the latest developments in site-specific recombination techniques, their specific features and 
comparisons. DOI: 10.7508/ibj.2016.02.001 
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INTRODUCTION 

 

he isolation of high-producing Chinese hamster 

ovary (CHO) clones for biopharmaceutical 

products is an industrial problem. Suitable 

stable cell lines are widely generated for high-level 

expression of recombinant proteins using random 

integration linking genomic amplification; however, it 

is very laborious and time-consuming and needs 

improvement. Also, due to position effects, it results in 

low and unpredictable yields of expression
[1]

. High-

throughput selection methods, such as fluorescence-

activated cell sorting or automated colony pickers, 

normally use some expensive procedures based on 

fluorescence. Vector engineering and site-specific 

recombination have shown acceptable results in 

isolating high-producing clones
[2]

. The improvement of 

impressive and safe non-viral vectors would 

considerably facilitate the complexity of recombinant 

protein expression. Site-specific recombination 

integrates transferred gene into a site with the desired 

surrounding chromatin. There are several commercially 

available systems for site-specific integration as 

follows: 1) two groups of recombinase family that 

include the tyrosine recombinase and serine 

recombinase
[3]

. Both families direct recombination 

between two recombinase target sites and result in 

sequence-specific DNA insertions. Since 1990s, 

tyrosine recombinases, such as Cre and Flp, have been 

used for site-specific integration in animal cells
[4]

. 

According to the reports, these particular recombinases 

can cause chromosomal aberrations. Because of the 

presence of pseudo-sites, control of inaccurate effects 

is less powerful
[5]

. Different attempts have been made 

to develop the efficiency and specificity of this system 

by redesigning their site specificity
[6,7]
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transposable elements, including the Sleeping Beauty 

(SB), piggyBac (PB), and Tol2 transposons that move 

in the host genome via a “cut and paste” mechanism. 

They account the most useful tools for genetic 

engineering because of their easy laboratory handling 

and controllable nature. 

These strategies can increase biopharmaceutical 

protein titer and decrease the required time to achieve 

sufficient amounts of protein for pre-clinical 

evaluation
[8]

. Use of a site-specific recombinase may 

be expensive, and initial screening for amplifiable sites 

is necessary to be performed. This step is performed 

only once to produce an isogenic cell line that can be 

utilized to produce a range of desired gene products. 

The reviewed methods have also obvious positive 

effects on cell-specific productivity. 
 

Transposases 

DNA transposons are natural genetic elements 

moving via a conservative cut and paste mechanism 

from one chromosomal location to another. They are 

composed of an open reading frame coding for the 

transposase and flanked by two inverted terminal 

repeats. The molecules that support the integrative 

process are relatively easy for engineers since only two 

separate plasmids are co-delivered to the cells (Fig. 1). 

The donor plasmid carries transposon in which the 

original transposase gene is replaced with a transgene 

driven by an appropriate promoter, and helper plasmid 

carries the transposase expression cassette. 

Alternatively, the transgene and transposase expression 

cassettes can be placed on the same plasmid to simplify 

the process. DNA transposon has several advantages 

that make it a very promising tool for a wide variety of 

genomic methods
[9]

. 

SB is a non-viral element that can integrate 

efficiently into the mammalian host chromosomes. The 

transposition of SB element always occurs into a TA 

target dinucleotide, which is subsequently duplicated 

upon insertion by cellular DNA repair pathways
[10]

. SB 

target site selection is determined by structural 

constraints rather than primary DNA sequence. In 

contrast to most retroviral-based vectors, SB integrates 

somewhat randomly in mammalian cells, without any 

discernible preference for actively transcribed genes
[11]

. 

This feature makes SB a suitable candidate for 

development into targeted systems. The first step 

towards specific site integration at the genome scale 

was achieved in 2007 with an SB transposase fused 

with the E2C zinc-finger protein. However, these 

systems are still based on random integrations
[12]

.  

Tol2, a hAT superfamily, is another transposon 

system that can transfer large transgenes of up to 11 

kbp with minimal loss of transposition activity
[13]

 and 

less preventive effect on transposition. Tol2 

transposase activity is more susceptible to be affected 

by molecular engineering, as described for SB, and its 

targeting preference is not obvious. Also, 5’ regions of 

genes are most preferred for Tol2, the same as other 

hAT elements
[14]

. 

PB, a superfamily of PB, is a DNA transposon 

isolated from the cabbage looper moth. It integrates 

into TTAA sequences, and transposition occurs via a 

cut and paste mechanism in which the PB transposases 

are initially recognized and bind to the transposon 

termini
[10]

. It then excises the entire transposon from its 

original location and catalyzes its integration at another 

chromosomal site through a mechanism that is not 

dependent on host factors
[11]

. In comparison, PB is an 

alternative to SB and even to Tol2 because of its large 

cargo size (up to 14 kb), high activity in many cell 

types, long-term expression in mammalian cells, less 

susceptibility to be affected by molecular engineering, 

and the ability to excise precisely
[15]

.   

PB and Tol2 have shown similar error rates in 

insertion into genes, especially introns or getting close 

to transcription start sites. There are some pieces of 

evidence that active chromosomal regions favor the PB 

and Tol2 integration processes
[16]

. It seems that host 

factors have an important role in PB and Tol2 

integration rates. Also, the potential risk of undesirable 

integration cannot be excluded and the continuous 

expression of an inadvertent integrated transgene can 

result in genotoxic risk
[17]

. Transposable element,  

such as  PB  and  SB,  have  been  used  for  integrating  
 
 

 

 

 

 

       
 
 

Fig. 1. DNA transposon system. The transposon vector 

includes the DNA of interest flanked by transposon inverted 

terminal repeat sequences, and the transposase expression vector 

composed the transposase gene placed the downstream of a 

suitable promoter. 
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recombinant genes into cultivated mammalian cells
[18-

20]
. Using PB transposon, recombinant CHO cell lines 

are able to produce up to four-fold more recombinant 

protein in comparison to standard transfection and are 

stable up to three months in the absence of selection
[21]

.  

 

Cre/loxP recombination  
Cre/loxP recombination system is a gene-targeting 

method for targeting genes to specific sites of genome 

with suitable expression levels
[22]

. Cre recombinase 

recognition site, known as a loxP site, is a 34-bp DNA 

sequence that will remain after integration. Therefore, 

this reaction is reversible by the loxP site. Despite this 

disadvantage, the Cre/loxP system is able to generate 

high specificity by about 80%
[23]

. In an experiment, 

dhfr-deficient CHO cells were transfected with a vector 

containing the green fluorescent protein reporter and a 

dhfr gene downstream of loxP site
[22]

. The selection of 

positive clones was first based on the highest 

fluorescence and in the second step, methotrexate 

amplification-selection procedure was performed. 

Then, a targeting vector containing the antibody of 

light and heavy chain genes was fused to a hygromycin 

resistant marker and a loxP site was co-transfected 

along with Cre recombinase to catalyze the site-

specific recombination. The targeting vector was 

integrated into a locus that was transcriptionally active 

and amplifiable (Fig. 2). This issue resulted in 

producing 160 mg/L human monoclonal antibody in 

seven days; a substantial improvement compared to the 

previously reported value of 40 mg/L obtained under 

similar conditions
[23]

. This method showed a noticeable 

increase  in   production  titers  since  gene   integration  
 

 

 

 
 

Fig. 2 . Schematic diagram of Cre/loxP recombination system. 

occurred at a location that was pre-selected for its 

ability to be amplified.  In comparison to traditional 

methods, because of the elimination of the second 

round of amplification after establishing platform cell 

line, this method was less time-consuming. Also, the 

requirement of the Cre recombinase might cause an 

increase in the cost of this method.  

 

Flp/FRT recombination 
 Another gene-targeting system is known as Flp/FRT 

by Flp recombinase and gene sequences tag with a 

FRT sequence. Flp/FRT system has weak 

recombination specificity (10%)
[24]

. Using a vector 

containing two weakened markers (β-galactosidase 

and dhfr) and an FRT sequence for subsequent 

recombination into the transcriptionally active sites, 

cells were screened for different gene integration sites. 

Then 20 candidate clones were selected for amplifiable 

expression sites, three of which were suitable as hosts 

for Flp recombination of antibody genes. After six days 

of culturing, up to 200 mg/L full-length anti-CD20 

antibody was produced in a spinner flask. Other report 

have shown that this method can be used in a broad 

range of target genes
[25,26]

. In other similar works 

utilizing the Flp/FRT system
[24]

, a target vector was 

tagged by FRT and an antibiotic resistance marker. 

Also, high producing clones were isolated for tissue 

plasminogen activator, and the highest specific 

productivity achieved was 17.1 μg/10
6
 cells/day. 

Therefore, this method is very similar to the Cre/lox 

system with the same advantages and limitations. 

 

ΦC31 integrase recombination 

ΦC31 is a serine recombinase from the streptomyces 

phage f31 that can catalyze recombination between f31 

phage attP site and the bacterial host attB site. There 

are up to 100 target sites for this system in the human 

genome
[27]

; however, the selection of specific 

inegration sites in this system is impossible. The high 

rate of chromosomal translocations and the risk of 

gene-toxic effects such as cancer are important 

concerns related to ΦC31. The obvious advantage of 

ΦC31 integrase over Cre and FRT systems is its 

irreversibility. The ΦC31 integrase catalyzes 

recombination between attP and attB sites, which 

consist of different sequences. Two resulting 

recombination hybrid sites cannot be substrates for the 

integrase activity (Fig. 3). Another advantage is the 

presence of several pseudo-attP sites with good 

sequence similarity to native attP sequence in 

mammalian genome that can act as substrates for the 

enzyme. A disadvantage of ΦC31 in comparison to 

Cre/loxP is its low specificity that is almost 10%, 

similar  to  Flp  recombinase.  By   protein  engineering  
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Fig. 3.  Schematic diagram of the ΦC31 integrase-mediated 

recombination of donor plasmid sequence into pseudo-attP sites 

in host genome. 

 
 

method, a mouse codon-optimized mutant of ΦC31 

integrase known as ΦC31o was developed
[24]

. 

Recombination specificity of this mutant version of the 

enzyme was identical to that of Cre recombinase. CHO 

cells were co-transfected with a plasmid transcribing 

the ΦC31 enzyme and a plasmid containing an attB site 

for integration into pseudo-attP sites and a gene for 

luciferase reporter. A 60-fold higher expression yield 

has been reported using this recombination system 

compared to random transfection methods
[27]

. To take 

more advantage of genome engineering capacities of 

ΦC31 integrase, it can be combined with other site-

specific recombinases that are highly specific but 

recognize only their own attP sites (not pseudo-attP 

sites)
[28]

. There are many integrases that are functional 

in mammalian cells and have been commonly used in 

combinatorial systems, such as Bxb1, R4 Cre, and Flp 

(Table 1).  
 

Artificial chromosomes expression system (ACE) 

Human artificial chromosomes have several 

advantages over conventional gene delivery systems 

and seem highly promising
[29,30]

. Artificial ACE is 

composed of a mammalian based artificial 

chromosome (Platform ACE), an ACE-targeting 

vector, and a mutant λ integrase (ACE integrase) for 

site-specific recombination
[31,32]

. The platform ACE 

consists of tandem repeated ribosomal genes, repetitive 

satellite sequences (from the pericentromeric 

heterochromatin), natural centromeres, and telomeres 

to enable DNA replication without need for integration 

into the host cell genome, which reduces clonal 

heterogeneity because of chromosomal aberration. 

Recombination acceptor of attP sites in platform ACE 

is about 50–70, thus allowing for the incorporation of 

multiple copies of the considered gene. The platform 

ACE cell line is cotransfected with the ACE-targeting 

vector and ACE integrase plasmid. Following the 

recombination event, promoterless selection marker on 

the ACE-targeting vector integrates the downstream of 

the SV40 promoter in the platform ACE. Therefore, 

under selection pressure, the survived cells are 

identified as clones that have undergone a correct 

recombination event (Fig. 4). Utilizing this approach, 

high-expressing clones select from 100 to 200 cell 

clones, and yield of monoclonal antibodies expressing 

cell line by this system has been more than 500 mg/L 

in batch terminal shake flask cultures
[33]

. 

 
Gene targeting in applications other than protein 

expression 
Transposable elements are important tools for 

insertional mutagenesis and transgenesis
[34]

. For 

genome  manipulations  in  vertebrates  and  mammals, 

 

 
 

    

     Table 1. Brief comparison of transposase, recombinase, and integrase approaches 
 

Approach Advantage Disadvantage 

Transposases 

    Sleeping beauty 

    piggyBac 

piggyBac 

 
Reversible 

   

Tyrosine recombinases           

    Cre/loxP  

    Flp/FRT 

Less or no Amplification Reversible 

 

   

Serine integrases 

      ΦC31 

Irreversible integration in transcriptionally active the  

part of genome  

Stability 

Less or no amplification 

Amplification is required for 

high-level  expression 
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Fig. 4. Diagram of the insertion of the plasmid containing the cytomegalovirus promoter and the green fluorescent protein gene in 

the multi-integrase human artificial chromosomes HAC vector or host chromosome. 

 
 

 

the transposon-based tool was started by SB 

reactivation in 1997. The SB has been successfully 

used for genetic modifications of human cell lines and 

various vertebrates
[13,35,36]

. The PB system has been 

applied for different applications such as germline or 

somatic mutagenesis, gene therapy, and gene transfer 

in mammals or human cells
[37]

. The PB vector has been 

used to produce induced pluripotent stem cells
[38]

. SB 

and PB systems have been applied for the modification 

of CD34+ hematopoietic stem cells
[39,40]

. 
The site-specific recombinases have been proven to 

be useful tools for the analysis of gene function both in 

vitro and in vivo
[41,42]

. Transgenes integration into 

human embryonic stem cells has been also reported 

using ΦC31 system technique
[43]

. Because of 

genotoxicity, ΦC31 system does not seem suitable in 

human gene therapy applications
[44]

. Artificial 

chromosomes and minichromosome-like episomes are 

very promising tools for gene therapy of inherited 

diseases caused by recessive mutations such as 

hemophilia or Friedreich's ataxia
[45]

. 

 

Other gene-targeting approaches in biopharma-

ceutical production 
There are a number of methods rather than site-

specific recombination for cell line engineering and 

biopharmaceutical purposes. Below is a summary of 

the high-impact approaches: 

Lentiviral vectors integrate into the host genome of 

both dividing and non-dividing cells. These complex 

retroviruses can be used to express recombinant 

proteins in various cell types
[46,47]

. 

The lentiviral system is naturally flexible and 

modular and allows for the insertion of nucleic acid 

sequences fewer than 6 kb in length
[48]

. Lentiviral 

vectors could generate high producer clones expressing 

recombinant proteins such as blood coagulation factor 

VIII, secreted alkaline phosphatase
[49]

, and tumor 

necrosis factor, Fc fusion protein
[50]

, even without 

chemical selection in serum-free media. Until now, 

several approaches, including fusion of viral integrase 

to a hetrologous DNA-binding domain protein
[51,52]

 and 

combining site-specific recombinase systems with 

lentiviral vectors
[53]

, have been invented to mediate 

lentiviral integration in a site-specific manner. 

However, the integration of retroviral DNA is heavily 

biased towards trans-criptionally active genes, which 

could compromise the potential utility of any directed 

integration strategy
[54]

. 

Zinc-finger nucleases and transcription activator-like 

effecter nucleases comprise a powerful class of tools 

for biological research. These chimeric nucleases are 

composed of programmable, sequence-specific DNA-

binding modules linked to a non-specific DNA 

cleavage domain
[55]

. Zinc-finger nucleases and 

transcription activator-like effecter nucleases enable a 
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broad range of genetic modifications; however, cell 

line development using DSB-mediated targeted 

integration has been reported only in a very few 

cases
[56]

, probably due to intellectual property 

obstacles
[57]

. 

The clustered regularly interspaced short palindromic 

repeats (CRISPRs)/Cas system, which uses re-

programmable trans-activating CRISPR-RNA for 

sequence-specific cleavage, has emerged as an efficient 

tool for genomic modifications
[58]

. The system has 

been successfully used for genome editing in CHO for 

biopharmaceutical development
[59,60]

. Using this 

system, the site-specific integration of the therapeutic 

protein gene in CHO has been reported
[61]

. However, 

additional studies are required to evaluate the 

specificity and the toxicity of RNA-guided DNA 

endonucleases. 

Mammalian cell protein expression system has been 

the dominant recombinant protein production system 

for clinical applications in last two decades. This 

system has produced more than half of the 

biopharmaceutical products in the market and several 

hundreds of candidates in clinical development. 

Furthermore, many improvements have been made in 

cell line engineering methods, genetic methods of 

expression, gene silencing, and gene-targeting systems. 

Due to inefficiencies of traditional random integration 

methods in producing appropriate yields expression in 

industrial scales
[62-65]

, numerous studies are nowadays 

dedicated to establishing efficient, targeted gene 

integration systems. There are different enzymes that 

have to be engineered to induce and target a double-

strand break for recombination.  

New site-specific non-viral vectors based on a given 

recombinase, integrase, or modified transposase can 

direct integration into a related site with a similar 

nucleotide sequence and thus correct random 

integration limitations and immunogenicity in gene 

therapy vectors. 

Transposon-based vectors, such as SB, PB, and Tol2, 

increase integrated gene copy numbers and improve 

the recombinant protein titer as compared to the 

standard transfections
[66]

. However, the random 

inherent of transposases is a major drawback for their 

genomic modification applications. Phage recom-

binases (Cre, Flp, and ΦC31) enable an efficient and a 

site-specific integration of transgene and are more 

easily vectorizable. The in vitro GATEWAY
TM

 cloning 

method (invented by Invitrogen
TM

 USA) with an 

impact on a variety of research areas benefits from 

phage integrases
[67]

. The site-specific non-viral vectors 

based on the ΦC31 integrase have been promising in 

achieving long-term therapeutic gene expression 

through integration in tissue culture cells and in 

animals. However, these systems are limited by the 

need for a prior establishment of platform cell lines and 

the possibility of chromosomal aberrations
[68]

. The 

artificial engineered mammalian chromosomes are an 

example for an ideal gene delivery vector, with a stable 

episomal maintenance and a large transgene capacity. 

However, some factors, such as having a fragile 

construct, difficulties for purification, and low 

transduction efficacy, limit the application of human 

artificial chromosomes
[69]

. There is still much need for 

efforts to further improve the methods for designing 

recombinases with altered specificity and with 

combinatorial structures that would be more practical. 

Therapeutic potential of targeted recombination 

systems and optimal methods for delivering these 

enzymes into different cell types are the other fields 

that need continued exploration.   

In addition to above mentioned methods, the recent 

tool CRISPR/Cas could be an advantageous choice for 

the future, but features such as off-target mutations and 

unwanted chromosomal translocations associated with 

off-target DNA cleavages
[70]

 also represent challenges 

for this system. The latest improvement of gene-

targeting methods for mammalian recombinant 

proteins expression, as an important subcategory of 

cell line development, was summarized in this review.  
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