Changes in the PPlα mRNA Level and PP1 Activity of Ascites Hepatomas at Different Cell Growth Rates

Mostafa Saadat

Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran

ABSTRACT

It is now well established that the type la of serine/threonine protein phosphatases (PPlα) may be implicated in malignant phenotype. Although the PPlα mRNA level increased in livers at prereplicative stages of hepatocarcinogenesis and all of examined rat ascites hepatomas, unexpectedly, dramatically decreased in some of primary hepatomas. In order to elucidate the low level of PPlα mRNA in some of primary hepatomas and investigate any correlation between cell growth rates and change(s) of both PPlα mRNA and PP1 activity, the present experiments were done. The most important aspects of the present study are: 1) The PPlα mRNA level may decreased in ascites hepatoma AH-109A cells harvested from a highly bloody ascites compared to ones harvested from a milky ascites. 2) The spontaneous PP1 activity in particulate fraction of AH-7974F showed a positive correlation with cell growth rate. 3) There was no correlation between proliferation rate of AH-7974F and the amount of PPlα catalytic subunit as well as potential PP1 activity in particulate fraction. Therefore, it is suggested that the PPlα mRNA level may decreased in the primary hepatomas with low proliferation rate which were under very bad nutritional conditions. Iran. Biomed. J. 2: 33-37, 1998.

Keywords: Protein Phosphatases, PPlα, Enzyme Activity, Catalytic Subunit, Hepatoma.

INTRODUCTION

The reversible phosphorylation of serine, threonine, and tyrosine residues of proteins is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. The phosphorylation and dephosphorylation triggers conformational changes in regulatory proteins that alter their biological properties. The level of phosphoproteins is determined by the relative activities of protein kinases and the protein phosphatases [1, 2]. At present, serine/threonine protein phosphatases are classified into four groups, termed PP1, PP2A, PP2B, and PP2C [1]. The type 1 protein phosphatases (PP1) is inhibited by nanomolar concentration of two small heat- and acid-stable proteins, termed inhibitor-1 and inhibitor-2 and preferentially dephosphorylate the β-subunit of phosphorylase kinase [1]. Four isoforms of the PP1 catalytic subunit have been identified in human (termed PPlα, PPlβ, PPlδ, and PPlγ) and rat (termed PPlα, PPlδ, PPlγ, and PPlγ) by analysis of cDNA clones [2, 3].

During several years ago, it is reported that mRNA level of PPlα was increased under various conditions such as during regeneration of rat liver from 6h after partial hepatectomy [4], in late of GI phase of synchronized NIH3T3 fibroblasts [5], 3-6 weeks after administration of diethylnitrosamine (DEN) during chemical hepatocarcinogenesis according to the Solt-Farber model [6], all strains of examined rat ascites hepatoma cell lines [6-10] and in some of primary hepatomas [3, 6, 8], compared with their controls. Recently, we are reported that in the particulate and nuclear fractions of ascites hepatomas, potential PP1 activity (PP1 activity after treatment with Co2+/trypsin) and the amount of PPlα catalytic subunit were remarkably increased compared with either regenerating or normal livers as controls [11]. Therefore, these alterations of PPlα in its mRNA level, protein content of its catalytic subunit and PP1 activity in subcellular fraction of hepatomas may be implicated in malignant phenotype. However, the decreases of the PPlα mRNA level in some primary hepatomas were unexpected [3, 6, 12]. In the present study, in order to elucidate this low level of PPlα mRNA in some
of primary hepatomas, it is tried to determined PP1α mRNA level. PP1 enzyme activity and protein content of catalytic subunit of PP1 α in poorly differentiated ascites hepatomas at different cellular growth rates.

MATERIALS AND METHODS

Hepatoma Cells. Male Donryu rats weighing 100-150 gr (5 weeks old) and ascites hepatoma cell lines AH-109A and AH-7974F [13] were used in the experiments. The ascites hepatomas were inoculated intraperitoneally into rats and all of ascites fluid containing hepatoma cells was harvested, and washed with physiological saline (3 times, 4°C) to remove erythrocytes.

RNA Extraction and Northern Blotting. Total RNA was extracted and purified from samples using a single step method of acid guanidium thiocyanate-phenol-chloroform extraction [14]. Total RNA (20 mg/lane) were electrophoresed on a 1.2% agarose gel containing 6% formaldehyde and transferred onto nitrocellulose membrane (Schleicher & Schull, Dassel, Germany). After being baked at 80°C for 2h under vacuum, the filters were prehybridized in 5x SSPE (1x SSPE; 0.15M NaCl, 0.01M NaH₂PO₄,1.0M EDTA), 5 x Denhardt's solution, 100 mg/ml denatured DNA, and 50% formamide at 42°C for 2h. For hybridization, the full length of rat PP1α cDNA [3, 7] probe was labeled with [α-³²P] dCTP using the random primer method, and incubated with membranes in the same condition at 42°C overnight. Following hybridization, the filters were washed as described in the figure legends. Washed and dried filters were exposed to XRP-5 X-ray film at -80°C in cassettes with intensifying screens [15].

Preparation of Subcellular Fractions. The subcellular fractionation was carried out at 0-4°C as described previously [10]. In brief, hepatoma cells (2x10⁷) or rat liver (0.1 g) were homogenized with 5x2 strokes using a Potter homogenizer in 1 ml of homogenizer solution (150 mM Tris-HCl, pH 7.0, 2 mM EGTA, 4 mg/ml leupeptin, 0.1 mM benzamidine, 0.1% (v/v) 2-mercaptoethanol, and 0.1 mM phenylmethylsulfonyl fluoride (= PMSF)) and then centrifuged at 800 ×g for 10 min to remove unbroken cells and nuclei. The resulting super natant was further centrifuged at 100,000 ×g for 60 min to separate cytosol from particulate fraction. The resulting pellet was rinsed with homogenizer solution, then resuspended with 1 ml of homogenizer solution containing 1% Nonidet P-40 and used as particulate fraction.

Assay of Type 1 Protein Phosphatase. Assay of PP1 was carried out by the method of Cohen et al. with a slight modification as described previously [16]. Briefly, ³²P-labeled rabbit skeletal muscle phosphorylase a (10⁶ cpm/nmol) was used as substrate. After pre-incubation, reaction was carried out for 10 min and terminated by adding 20 mM slocutagin acid in 0.01 M H₂PO₄. PP1 is the activity that is sensitive to inhibitor-2. No PP2B, PP2A, or PP2C activity is detected under these conditions, as described previously [16]. Treatment with Co²⁺/trypsin was carried out as described elsewhere [16]. It is generally believed that conversion of the inactive/latent high-molecular-weight PP1 forms to the active M= ~35,000 catalytic subunits can be achieved by the Co²⁺/trypsin treatment [12, 16].

All samples were diluted 50 times with reaction buffer containing 1 mg/ml bovine serum albumin and then assayed. The spontaneous and potential activities of PP1 represent ones before and after treatment with Co²⁺/trypsin, respectively. One unit of PP1 activity was defined as the amount of enzyme which catalyzes the release of 1 nmol of phosphate from ³²P-phosphorylase a per min at 30°C.

Western Blot Analysis. Samples were subjected to sodium dodecyl sulfate-poly acrylamide gel electrophoresis (SDS-PAGE) on a 13% polyacrylamide gel according to the method of Laemmli [17]. The proteins were electrophoretically transferred to a nitrocellulose membrane. The membrane was incubated with the anti-PP1 antisera and the immunoreactive bands were visualized using an ECL Western blotting detection kit as described previously [18].

Other Methods. Protein concentration was measured by the method of Bradford [19] with a Bio-Rad protein assay kit using bovine serum albumin as a standard. The immunoreactive bands were scanned with a Personal Densitometer to determine the relative amounts of PP1α catalytic subunit. The statistical significance of the differences between the mean of the samples was determined by Student's t-test [20]. A probability of P<0.05 was considered statistically significant.

RESULTS AND DISCUSSION
It has been known that a tumor increases exponentially in size, then the growth become slow and the tumor eventually shifts into a quasi-stationary state [21-23]. It is showed that the mRNA levels of PP1α in poorly differentiated rat ascites hepatoma cell lines were affected by several factors, including harvest time, transplantation rate, percent of free cells, and sex. The PP1α mRNA level in the ascites hepatomas showed a negative correlation with harvest time [9]. Previously, AH-7974F harvested in exponential growth phase (day 7.0 after transplantation) and quasi-stationary phase (day 8.5 after transplantation) and it is found that the PP1α mRNA level in the quasi-stationary phase of AH7974F significantly decreased compared to that of in exponential growth phase [9].

In order to know more precisely the correlation between hepatoma cell growth rate and PP1 enzyme activity, the spontaneous and potential activity of PP1 in cytosolic and particulate fractions of the hepatomas was measured and compared with those of rat liver (Fig. 1). Both spontaneous and potential PP1 activities in cytosolic fractions of AH-7974F (harvested 7.0 and 8.5 days after inoculation), remain constant at those of normal liver. On the other hand the spontaneous PP1 activity in particulate fraction was significantly increased (t₄FSIZE=67.2.98; P<0.05) in AH-7974F which harvested day 7.0 compared to normal liver but markedly decreased and reached to its normal level at slower proliferating rates of the AH-7974F which harvested day 8.5 after inoculation (tdf₆= -0.81; P>0.05). Interestingly, AH-7974F cells, irrespective of their harvest time, showed high level of potential PP1 activity in particulate fractions compared to normal liver, that confirm our previous findings [10, 11].

To get more insight into the alteration of PP1 activity in hepatoma, Western blot analysis was performed using specific antisera against the carboxyl-terminal peptide of PP1α. It should pointe out that the intensities of immunoreactive PP1α bands were proportional to the serial dilutions of rat liver extracts (Fig. 2). As show in figure 3, Western blot analysis demonstrated that the amounts of particulate PP1α catalytic subunit in AH-7974F were kept at high levels, which confirming our previous data [11]. However, there is no correlation between the hepatoma proliferation rate and the amounts of PP1α in either particulate or cytosolic fractions (Fig. 3).

Figure 4 represents the PP1α mRNA level in normal liver, AH-109A harvested from highly bloody ascites 12 days after transplantation and AH-109A harvested at the same time from a milky ascites. It is clear that PP1α mRNA was increased in AH-109A harvested from milky ascites compared to the bloody one and normal liver. Therefore, low level of PP1α mRNA in AH-109A harvested from bloody ascites may be elucidated by the effect of bad nutritional conditions.

Fig. 1. PP1 activities at different growth stages of neoplastic cells. Spontaneous (A) and potential (B) PP1 activities in cytosolic and particulate fractions of AH7974F at exponentially and quasi-stationary stages, which were harvested 7 and 8.5 days after inoculation, respectively and those of normal liver are shown. Values of normal rat liver and hepatomas represent averages of 6 and 4 assays respectively.
The immunoreactive bands were scanned with a densitometer, values were normalized to that of the extract diluted 8-fold, and the calculated relative densities were plotted against 1/dilution fold.

Fig. 2. Correlation of intensities of immunoreactive PP1α bands and amounts of PP1α catalytic subunit. Serially diluted extracts from normal rat liver were subjected to Western blot analysis using antiserum against carboxyl-terminal peptide of PP1α catalytic subunit. The immunoreactive bands were scanned with a densitometer, values were normalized against those of normal liver. It should be noted that the primary hepatomas which were under very bad nutritional conditions. Further experiments may elucidate the control mechanism(s) of PP1α gene expression in both hepatoma and hepatocyte systems.

ACKNOWLEDGMENTS

I wish to express my appreciation to Mrs. Behjat Shams, Mr. Bahman Faramarzi, and
Mr. Ali Zakeri for their skillful assistance. This work has been supported in part by a Grand-in-Aid for Promotion of Education and Science to Shiraz University, provided by the Ministry of Culture and Higher Education of Islamic Republic of Iran.

REFERENCES