Extracellular Production of Silver Nanoparticles by Using Three Common Species of Dermatophytes: *Trichophyton rubrum*, *Trichophyton mentagrophytes* and *Microsporum canis*

Maryam Moazeni¹, Niloofar Rashidi¹, Ahmad R. Shahverdi², Fatemeh Noorbakhsh³ and Sassan Rezaie¹,⁴

¹Div. of Molecular Biology, Dep. of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran; ²Dep. of Pharmaceutical Biotechnology and Medical Nanotechnology Research Center, School of Pharmacy, Tehran University of Medical Sciences, Tehran; ³Dep. Of Biology, Islamic Azad University, Varamin-Pishva Branch, Varamin; Dept. of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran

Received 13 August 2011; revised 20 December 2011; accepted 21 December 2011

ABSTRACT

Background: To develop a new green approach for biosynthesis of silver nanoparticles, myconanotechnology has been represented as a novel field of study in nanotechnology. In this study, we have reported the extracellular synthesis of highly stable silver nanoparticles using three species of dermatophytes: *Trichophyton rubrum*, *Trichophyton mentagrophytes* and *Microsporum canis*. Methods: Clinical strains of these species were grown in a liquid medium containing mineral salt and incubated at 25°C for 5-7 days. The cell-free filtrate of each culture was obtained and subjected to synthesize silver nanoparticles in the presence of 1 mM AgNO₃. Results: The reduction of Ag⁺ ions in metal nanoparticles was investigated virtually by tracing the solution color which was switched into reddish-light brown after 72 h. For *T. mentagrophytes*, a UV-visible spectra demonstrating a strong, quite narrow peak located between 422 and 425 nm was obtained. For *M. canis*, a fairly wide peak centering at 441 nm and for *T. rubrum*, a weak spectrum to decipher were observed. According to transmission electron microscopy (TEM) results, fairly uniform, spherical, and small in size with almost less than 50 nm particles were forms in case of *T. mentagrophytes*. For the other two species, TEM images showed existence of small spherical nanosilvers but not as small as nanoparticles synthesized by *T. mentagrophytes*. Conclusion: We observed that species belong to a single genus of the fungi have variable ability to synthesize silver nanoparticles extracellularly with different efficiency. Furthermore, the extracellular synthesis may make the process simpler and easier for following processes. *Iran. Biomed. J.* 16 (1): 52-58, 2012

Keywords: Nanoparticles, Dermatophytes, Extracellular biosynthesis

INTRODUCTION

The unique size-dependent characteristics of nanoparticles make them indispensable in many areas of human life ranging from industries like aerospace engineering to natural science, such as medicine, biology and food technology [1]. In aspect of medicine, nanobiotechnology poses an upcoming and rapid developing field with various kinds of applications especially for human therapeutics [2].

Apart from antimicrobial properties, anti-cancer effect of nanoparticles has been recently documented [1] as well as anti-fungal and anti-tumor drugs using simple delivery systems have already been marketed. Moreover, successful application of nanoparticles in drug delivery and controlled-drug release has been newly reported [3, 4]. Hence, understanding of biological process in nanoscale level is a strong driving force behind development of nanotechnology [5].

In very recent years, the mycosynthesis of metal nanoparticles or myconanotechnology has drawn the attention of researches to the novel field of...
biosynthesis of nanomaterials. This new field of nanoscience is at the interference of nanotechnology and mycology, comprising an interesting new applied science with considerable potentials owing to the wide range of diversity of fungi [6].

In the world of modern nanoscience which toxic synthesis protocols are being used to obtain the nanoparticles, there is a need to evolve a green approach for nanomaterial synthesis. Therefore, eco-friendly, non-toxic approaches for biosynthesis of nanomaterials and nanostructures have been newly emerged as a promising method to meet the need [7-9]. With respect to this fact, there has been an increasing tendency for re-exploring of microorganisms as potential biofactories for synthesis of functional metallic nanoparticles. The fungal systems or myconanofactories have already been exploited for the biosynthesis of metal nanoparticles of silver, gold, zirconium, silica, titanium, iron (magnetite) and platinum [6] as well as ultrafine oxide nanoparticles, such as SnO_2 [10, 11] and TiO_2 [11].

A large number of fungal strains are capable to synthesize silver nanoparticles (SNP) extracellularly, among which $\text{Fusarium oxysporum}$ [12], Bacillus licheniformis [13], Aspergillus fumigatus [14], Aspergillus niger [15], Aspergillus clavatus [16], $\text{Penicillium brevicompactum}$ [17], $\text{Cladosporium cladosporioides}$ [18], $\text{Fusarium semitectum}$ [19], and yeast strains MKY_3 [20] have been previously described.

As a matter of fact, fungi have some advantages over the bacteria and plants. Fungal mycelia are able to resist the flow pressure, agitation, high temperature and other inappropriate conditions. Furthermore, the extracellular secretion of reductive agents makes the downstream processing easier and finally the mycosynthesized nanoparticles can be directly used in various applications due to the absence of unnecessary cellular components into the experimental solution [21].

Dermatophytes are considered as a real potent skin parasite in public health as to induce superficial skin, hair and nail infections. However, the highly useful utilization of them should not be ignored in nanomycotechnology.

In the present investigation, for the first time, we have reported the extracellular synthesis of highly stable SNP using three more common species of dermatophytes including $\text{Trichophyton rubrum}$, $\text{Trichophyton mentagrophytes}$ and Microsporum canis.

MATERIALS AND METHODS

Fungal strains. Three strains of dermatophytes, T. rubrum, T. mentagrophytes and M. canis, were used in this investigation. The strains were isolated from cutaneous specimens of patients who were referred to Medical Mycology Laboratory, Department of Medical Mycology, Tehran University of Medical Sciences, Iran. The isolates were grown on Sabouraud dextrose agar medium (SDA) and preserved at 25°C until use.

Preparation of cell-free fungal filtrate. The liquid medium containing mineral salts was used to make an efficient medium for fungal growth and establish a biomass competent for SNP biosynthesis. The medium contained (g/l): KH_2PO_4 7.0, K_2HPO_4 2.0, MgSO_4 7H_2O 0.1, $(\text{NH}_4)_2\text{SO}_4$ 1.0, yeast extract 0.6, and glucose 10.0 [16]. The components were mixed completely by stirring on a magnetic stirrer and then the solution was boiled to digest the undissolved substances and filtered through filter paper. Three Erlenmeyer flasks each containing 200 ml of the mentioned medium were inoculated with three testing strains: T. rubrum, T. mentagrophytes and M. canis. The three flasks were incubated aerobically on an orbital shaker at 25°C agitating at 150 rpm. Since the growth rate of dermatophytes is low for getting enough amount of biomass, the flasks were incubated under the mentioned conditions for two weeks. Eventually, 2.5, 0.5 and 1.5 g of biomasses were obtained after this period of time for T. rubrum, T. mentagrophytes and M. canis, respectively. Afterward, the biomasses were extensively washed twice with sterile distilled water and then harvested by sieving through a plastic sieve, followed by extensive washing to remove all medium ingredients. Fresh and clean biomasses were taken into three new flasks containing Milli-Q deionized water with the ratio of 1:10. Then, they were agitated at the same condition as described above but for 72 h. Cell-free filtrates were obtained by utilizing Whatman filter paper No. 1.

Synthesis of silver nanoparticles. Cell-free filtrates were treated with AgNO_3 in such a way that a solution with 1 mM of AgNO_3 in final concentration was made. The flasks were agitated at 150 rpm in dark. A negative control (only filtrates, without the silver ion) was also run along with the experimental flasks.

Characterization of synthesized SNP. Aliquots of 1 ml of the reaction solutions were removed after 72 h and consequently subjected to UV-visible spectroscopy (Labomed Inc., USA). The absorbance was measured at a resolution of 1 nm. The shape and also estimated size of the SNP were determined by transmission electron microscopy (TEM). TEM images of the samples were obtained using a transmission electron microscope (Philips 30ML20, The Netherlands) at a voltage of 100 kv.

http://IBJ.pasteur.ac.ir
Evaluation of Antifungal activity of synthesized
SNP. In order to assess the antimicrobial effect of
synthesized silver nanoparticles, Candida albicans
standard strain (ATCC 10261) was applied. The isolate
was kept at ~80°C as 20% glycerol stocks and were
subcultured, as required, on SDA plates at 30°C.
Microdilution antifungal susceptibility testing of the C.
albicans isolate was performed by the broth
microdilution method described in CLSI document
M27-A3 [22] and performed with SNP and fluconazole
as a reference antifungal agent. Silver nanoparticles
synthesized by T. mentagrophytes were applied as the
representative of the nanoparticles produced by three
strains. RPMI 1640 medium with L-glutamine and
phenol red without bicarbonate and buffered to pH 7.0
with 0.165 mol/L MOPS (3-(N-morpholino)
propanesulfonic acid).

Fluconazole was dissolved in sterile diluted water to
64 µg/L, and then diluted to the final concentration of
0.0125 16 µg/L with the medium according to the
standard in the Clinical and Laboratory Standards
Institute (CLSI) reference method. After growing on
SDA (Merck, Germany) at 35°C for 24 h, the yeasts
were re-suspended in culture medium, adjusted with a
spectrophotometer at 530 nm wavelength and then
diluted in culture medium to prepare a working
solution at a concentration of 2.5 × 10⁵ cells/mL and
incubated at 35°C for 48 h. All tests were carried out in
duplicate. The interpretive criteria for susceptibility to
fluconazole were published by the CLSI [22], and were
as follows: (i) for fluconazole, susceptible, ≤ 8 µg/ml;
susceptible dose-dependent, 16 to 32 µg/ml; and
resistant, ≥64 µg/ml. For silver nanoparticles, a
solution of 16 µg/L was prepared and diluted to the
final concentration of 0.0125-16 µg/L with the
medium. The same inoculum size was applies for SNP
susceptibility test. The 96-well plate was incubated at
35°C for 48 h.

RESULTS

Silver reduction. Changing in color of the samples
were seen gradually switching from nearly colorless to
reddish-light brown after addition of Ag⁺ ions into the
filtered cell-free cultures in the dark. The intensity of
color has being increased during the time of
incubation. After 72 h, the process was stopped and the
particles were subjected to further analysis. The
reduction of the Ag⁺ ions into metal nanoparticles was
investigated virtually, so that the color of the three
solutions changed into reddish-light brown after 72 h
of incubation (Fig. 1A). However, control samples
(without silver ions) showed no change in color of the
cell filtrates when incubated in the same environmental
conditions (Fig. 1B). The appearance of a reddish-light
brown color in the reaction suggested the formation of
SNP [23]. No precipitation was observed within the
solutions even after 72 h of incubation.

UV-visible spectroscopy. Determining UV-visible
absorption is a rapid, reliable and available tool for
ensuring that colloidal silver particles have been
formed. The UV spectroscopy method can be applied
for size measurement of SNP based on localized
surface plasmon resonance band exhibiting at different
wavelength. The light absorption pattern of the cell
filtrate was monitored after 72 h in the range of 200-
800 nm by using UV-visible spectrophotometer (Fig.
documented for silver metal nanoparticles with sizes much less than 70 nm [24]. Figure 2b indicates a fairly wide peak centering at 441 nm for M. canis and Figure 2c shows such a weak spectrum to decipher for T. rubrum. However, other tools of determining SNP properties have proved the existence of the particles but with somehow aggression.

Analysis of transmission electron microscopy. TEM analysis was employed to determine the morphology and shape of SNP. The representative TEM image has been indicated in Figure 3. Accordingly for all three testing strains, the majorities of the SNP are relatively uniform in diameter and present in spherical shape. Additionally, TEM images depicted that the particles synthesized by T. mentagrophytes are predominantly formed at even less than 50 nm but not for T. rubrum and M. canis. In other words, the size of particles produced by M. canis was more than 50 nm and mostly in the range of 50-70 nm. In case of T. rubrum, it was well-demonstrated that the particles were produced in various different sizes, ranging from 50 to more than 100 nm. Moreover, the T. rubrum attributed particles were produced in cylindrical rather than spherical shape.

Evaluation of antifungal activity of synthesized SNP. In this study, fluconazole, an antifungal agent which is widely used to treat Candida-associated infections, was used as a positive control to compare with SNP. Silver nanoparticles synthesized by T. mentagrophytes showed antifungal activity against yeast strain tested and exhibited minimal inhibitory concentration value of 4 μg/mL; however, it was significantly less than fluconazole level. The strain was susceptible dose-dependent against fluconazole, showing minimal inhibitory concentration values of 16 μg/mL toward the fungal strain tested.

![Fig. 2. UV-visible spectrum of liquid mediums containing cell filtrates and silver ion (1 mM) for (a) T. mentagrophytes, (b) M. canis and (c) T. rubrum.](http://IBJ.pasteur.ac.ir)

![Fig. 3. TEM micrograph of silver particles synthesized by (a) T. mentagrophytes, (b) M. canis and (c) T. rubrum (scale bar: 100 nm).](http://IBJ.pasteur.ac.ir)
DISCUSSION

Myconanotechnology represents a novel field of study in nanotechnology and has currently attracted a great deal of attention. In fact, several scientists have re-explored the fungi including yeasts and filamentous fungi as a biofactory for eco-friendly, cost-effective synthesis of nanoparticles particularly SNP [24, 25]. The advantageous of fungal-mediated biosynthesis of nanoparticles have turned the attention of scientists to the kingdom of fungi. The most notable benefits of applying fungi in nanoscience are their resistance to many harsh conditions as well as secretion of extracellular reductive proteins so that it makes the downstream processes easier [20].

The unusual physicochemical and optoelectronic properties of nanoparticles present them as beneficial candidates for utilization in various fields of natural science including drug and gene delivery [26, 27], biodetection of pathogens [28], probing of DNA structure [29], tumor destruction [30] and tissue engineering [31]. Although living microorganisms are built up cells that are typically 10 μM across, the cell parts are much smaller than this so that the typical size of proteins is just 5 nm which is comparable with the dimensions of artificial nanoparticles [1]. Accordingly, the idea of using nanoparticles as small probes is being arisen. Consequently, it allows researchers to get the inspiration from cellular mechanisms without too much interference [32]. Therefore, innovation of new approaches for cost-effective, non-toxic and eco-friendly synthesis of nanoparticles is preferred nowadays.

The formation of nanoparticles has been reported by many investigators so far, both intracellular and extracellular. For example Ahmad et al. [23] reported the ability of the fungus *Fusarium oxysporum* for the synthesis of silver nanoparticles. Sastry et al. [26] demonstrated the intracellular synthesis of silver nanoparticles of 2-25 nm within *Verticillium*. Moreover, in 2006, Bhainsa and d'Souza [14] and in 2008, Gade et al. [15] reported the ability of soil-born *Aspergillus* to produce extracellular silver nanoparticles. In 2009, Balaji et al. [18] used *Cladosporium cladosporioides* for the extracellular synthesis of spherical silver nanoparticles from an aqueous solution of a silver salt. In comparison with other fungi, investigated dermatophytes were able to form bigger nanoparticles except *T. mentagrophytes*.

In the present study, three species of dermatophytes were applied to assess their ability of producing SNP and at last, we achieved notable results which enable us to compare extracellularly the various capacities of different species of dermatophytes in producing SNP.

It was observed that upon addition of the silver ion (1 mM) into the flask containing the cell filtrate, the color of the medium turned into light yellowish-brown (Fig. 1). The intensity of color increased due to excitation of surface plasmon vibrations in the metal nanoparticles. This significant observation indicates that the reduction of the Ag⁺ ions takes place extracellularly.

The unique optical properties of metal nanoparticles originate from the collective oscillations of conduction electrons are termed surface plasmon polariton resonances (SPPR) [24]. It is well known that The shape of SPPR spectrum and the wavelength at which the maximum absorbance is occurred is strongly related to the particle size and relative dimensions [33]. Therefore, increasing in particle size makes the SPPR peak move to longer wavelength [33]. Also, the size of SNP has a linear correlation with the peak intensity.

The UV-visible spectrum in Figure 2 shows the SPPR peak of SNP at 422 and 423.5 nm for *T. mentagrophytes* and *M. canis*, respectively. As the spectrums depict, the particles are likely to be less than 70 nm in size and are fairly monodispersed in case of particles synthesized by *T. mentagrophytes*. Unfortunately, no certain peak was observed for *T. rubrum*. Nevertheless, switching of the solution color to yellow as well as evidences of TEM analysis demonstrated that the SNP exist.

In fact, all three strains have successfully synthesized SNP, but *T. mentagrophytes* produced much more desirable particles in aspect of shape and dimensions.

The studies of Duran et al. [34] raise the possibility that formation of SNP by *Fusarium oxysporum* is mediated by two distinct mechanisms: One is through nitrate reductase and the other by shuttle quinine process. Similarly, it is also reported that NADH-dependent nitrate reductase is the main enzyme responsible for the reduction of silver ions [35].

Therefore, owing to the fact that the extracellular proteins secreted by the fungi are in charge of the reduction of Ag⁺ to Ag⁰, it is suggestive to investigate the role of reductase in the fungal filtrate to figure out why some species of dermatophytes produce SNP more efficiently than the other species.

The significant feature of silver is its broad spectrum antimicrobial property. Accordingly, several researchers have studied the antimicrobial activity of SNP against bacterial and fungal strains like *E. coli*, *Staphylococcus aureus* (methicillin-resistant *staphylococcus aureus*), *P. aeruginosa*, *Candida albicans* and HIV virus. Moreover, antimicrobial activity of wound dressings covering with SNP has been successfully examined against several common pathogenes [36-39].

Our results for evaluation the antimicrobial properties of synthesized silver nanoparticles were consistent with other researches so that the antifungal properties of the synthesized SNP were accurately proven. In addition to notable anti-*Candida* characteristics, it was well demonstrated that the...
inhibitory effect of synthesized SNP was even more effective than the antifungal drug, fluconazole.

In conclusion, extracellular synthesis of SNP is highly beneficial because no extra process is required to separate the particles from the living cells. Dermatophytes have potential for extracellular biosynthesis of SNP. In this investigation, it was observed that species of the same genus of the fungi have the ability to synthesize SNP with different efficiency.

ACKNOWLEDGEMENTS

The authors thank the Central Research Laboratory of School of Public Health for providing laboratory facility. We also thank Dr. Saeed Sepehriseresht for helping us with the TEM imaging. This research has been financially supported by a Tehran University of Medical sciences (TUMS) grant. The authors declare that there is no conflict of interests.

REFERENCES

