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ABSTRACT 
 

Medullary thyroid carcinoma (MTC) is an infrequent calcitonin-producing neuroendocrine tumor that initiates 
from the parafollicular C cells of the thyroid gland. Several genetic and epigenetic alterations are collaterally 
responsible for medullary thyroid carcinogenesis. In this review article, we shed light on all the genetic and 
epigenetic hallmarks of MTC. From the genetic perspective, RET, HRAS, and KRAS are the most important genes 
that are characterized in MTC. From the epigenetic perspective, Ras-association domain family member 1A, 
telomerase reverse transcriptase promoter methylations, overexpression of histone methyltransferases, EZH2 and 
SMYD3, and wide ranging increase and decrease in non-coding RNAs can be responsible for medullary thyroid 
carcinogenesis. DOI: 10.22034/ibj.22.3.142 
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INTRODUCTION 

 

edullary thyroid  carcinoma (MTC) is a rare 

neuroendocrine tumor that originates from 

the parafollicular cells (C cells) and 

produces calcitonin
[1]

. Approximately, a quarter of 

MTCs are genetic in nature; they are caused by a 

mutation in the rearranged during transfiction (RET) 

proto-oncogene, a receptor tyrosine kinase gene, which 

can undergo oncogenic activation through both 

cytogenetic rearrangement and activation of point 

mutation. Even though MTC is mostly sporadic (70-

80%), some hereditary patterns can be seen in 20-30% 

of cases: these are classified as familial MTC (FMTC) 

with autosomal dominant trait
[2-5]

. High serum 

concentration of calcitonin and carcinoembryonic 

antigen  is regularly regarded as MTC markers in 

blood
[6-8]

. It is common knowledge that cancer is the 

result of genetic changes accumulated in a manner that 

disturbs the normal homeostatic stability between cell 

proliferation and cell death
[9,10]

. In addition to genetic 

changes, epigenetic events have been considered as key 

indicators of carcinogenesis. Research on epigenetics 

has become gradually noticeable with the aim of 

understanding the role of epigenetic mechanisms in the 

abnormal events leading to cancer
[11-13]

. In fact, 

previous studies on cancer suggest that genetic and 

epigenetic alterations are two sides of the same coin 

responsible for morphological changes occurring 

during cancer progression
[12,14-16]

. Moreover, the notion 

that early-stage cancer is not as systematically 

aggressive as late-stage cancer is based on the finding 

that gene expression profiles is alike in early-stage 

cancer and fully metastatic cancer
[17-19]

. Thus, both 

genetic and epigenetic events correspond to several 

steps of carcinogenesis. In this review, we summarize 

current concepts on genetic and epigenetic changes 

associated with MTC and then discuss their potential 

relevance as biomarkers for cancer detection, 

diagnosis, and prognosis. 

 

Hallmarks of genetic MTC 

A mutation is a stable modification in the DNA 

sequence of a given gene, which may alter the normal 

gene function
[20]

. Mutations can occur anywhere, from 

a  single   DNA   building  block  (base pair)  to a large  
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Fig. 1. A RET dimer formed between two protein molecules, 

each spanning amino acids 703-1012 of the RET molecule and 

covering RET intracellular tyrosine kinase domain. One protein 

molecule, molecule A, is shown in yellow and the other, 

molecule B, in grey. The activation loop is colored purple and 

selected tyrosine residues in green. Part of the activation loop 

from molecule B is absent. mRET proto-oncogene with three 

main domains: an N-terminal extracellular domain with 

four cadherin-like repeats and a cysteine-rich region, 

a hydrophobic transmembrane domain, and a cytoplasmic 

tyrosine kinase domain. Phosphorylation of Tyr981 and the 

additional tyrosinesTyr1015, Tyr1062, and Tyr1096 are not 

covered by the above structure, though these have been shown 

to be important for initiation of the intracellular signal 

transduction processes[36]. 
 

 
 

segment of a chromosome, including multiple 

genes
[20]

. Some of the mutations are heritable, i.e. they 

are inherited from a parent and are present throughout 

a person’s life in virtually every cell in the body. These 

mutations are called germline mutations since they are 

present in the parent’s egg or sperm cells (germ 

cells)
[20,21]

. Other group of mutations are acquired  

mutations (or somatic): These happen only at a 

particular time during a person’s life and are present 

only in certain cells in the body
[20]

. These mutations 

can be caused by environmental factors, such as 

ultraviolet radiation from the sun or can occur if an 

error takes place in DNA replication during cell 

division. Acquired mutations in somatic cells (cells 

other than sperm and egg cells) cannot be passed to the 

next generation
[22-25]

. 

MTC has been described in two forms: sporadic and 

hereditary/familial. About one-fourth of MTC patients 

haveone of three different syndromes, which are 

FMTC, multiple endocrine neoplasia type 2A (MEN 

2A), or type 2B (MEN 2B). Around a half of the 

patients with MEN 2A or MEN 2B develop 

pheochromocytomas
[26-30]

. Moreover, 25% of patients 

with MEN 2A will possibly develop primary 

hyperparathyroidism
[28,31]

, while patients with MEN 

2B develop marfanoid habitus and mucosal/intestinal 

ganglioneuromatosis
[32]

; patients with just FMTC 

individually develop MTC
[29,32]

. In fact proto-

oncogene RET germline mutations is presented in 90% 

of patients with hereditary MTC (FMTC, MEN 2A, or 

MEN 2B)
[33]

. Thus, the entire hereditary syndromes are 

attributed to the same disease-causing gene
[34,35]

. RET 

proto-oncogene is a tyrosine kinas  receptor coding 

gene, and it is an element of the glial cell line-derived 

neurotrophic factor (GDNF) family which are 

classified as extracellular signaling molecules
[36]

. 

Human RET gene with 21 exons is localized on 

chromosome 10 (10q11.2)
[37,38]

. Like other  tyrosine 

kinase receptors, RET is able to motivate several 

signaling pathways, including RAS/extracellular 

signal-regulated kinase (ERK), phosphatidylinositol 3-

kinase (PI3K)/AKT, p38 mitogen-activated protein 

kinase (MAPK), and c-Jun N-terminal kinase (JNK) 
pathways

[30,39-44]
. The typical splicing of the RET gene 

results in three different isoforms. The C-terminal 

region in RET51, RET43, and RET9 have 51, 43, and 9 

amino acids, respectively
[45]

. As shown in Figure 1—

which is premised on the protein data bank code 

2IVT—all RET protein isoforms can be  subdivided 

into three main domains: an N-terminal extracellular 

domain with four cadherin-like repeats and a cysteine-

rich region, a hydrophobic transmembrane domain, and 

a cytoplasmic tyrosine kinase domain that is divided 

through the 27 amino acids insertion
[36,46]

. 

Glial cell line-derived neurotrophic factor and some 

other related molecules like neurturin, artemin, and 

persephin trigger an intracellular signaling pathway 

through a unique multi-component receptor systems 

including  glycosyl-phosphatidylinositol-anchored co-

receptor
  

 in addition to RET tyrosine kinase
[37,40,47-49]

. 

These neurotrophic factors support the survival of 

many neurons, including the central motor dopamine  
 

 

 
 

Fig. 2. Intracellular signaling pathways mediated by activated 

RET[55]. 
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neurons; they also cause peripheral autonomy
 [50-52]

 

more than renal development and facilitate regulation 

of spermatogonia differentiation  (Fig. 2)
[53,54]

. 

Unfortunately, unlike hereditary MTC, the etiology 

of sporadic MTC has not been completely elucidated. 

This is despite the fact that 75% of all MTC patients 

being sporadic without any family history of MTC or 

incidence of any other MEN 2-specific disease. 

Recently, some additional mutations, such as HRAS 

and KRAS mutations, have been found to be more 

appropriate diagnostic markers than RET for MTC. 

This observation has been suggested on the basis of 

high-throughput mutation profiling study (Fig. 3)
[56-59]

. 

In few cases of sporadic MTC, a deletion of codons 

Glu632 and Leu633 of RET proto-oncogene was 

identified. These mutations activate the RET gene more 

effectively than the Cys634Arg missense mutation. 

They also induce stable dimer formation in the absence 

of ligand
[60,61]

. 

In more aggressive phenotypes of sporadic MTC, the 

M918 TRET mutation has been found in around 30 to 

50% of cases
[62]

. Actually, the somatic RET mutation 

(M918T) is associated with stage of the disease and 

persistence of the disease after total thyroidectomy 

because it makes the chance of recurrence and 

metastasis greater than before and reduces chances of 

free survival
[62,63]

. A connection between the presence 

of this somatic mutation with the more advanced 

pathological TNM stage has also been identified
[64-67]

. 

 
Epigenetic hallmarks of MTC 

The word ‘epigenetics’ refers to covalent 

modification of DNA, protein, or RNA, resulting in 

changes in the function and/or regulation of 

DNA without modification of their original sequences. 

In some cases, epigenetic modifications can be stable 

and can pass on to future generations; mostly, 

however, they are vigorous modifications in response 

to environmental stimuli
[68]

. The major mechanisms 

responsible for epigenetic regulation are DNA 

methylation, histone modifications, and non-coding 

RNAs
[59,69-72]

. The role of epigenetics in MTC is 

largely defined as hypermethylation of CpG islands in 

the promoter region of Ras-association domain family 

member 1A (RASSF1A)
[73,74]

 and telomerase reverse 

transcriptase (TERT) genes
[75]

, overexpression of 

histone methyltransferases like EZH2 and 

SMYD3
[76,77]

, and microRNAs (miRNAs) expression 

profile (Fig. 4)
[78-84]

. 

In spite of the fact that RASSF1A gene promoter 

hypermethylation is linked to more aggressive thyroid 

cancers, CpG island methylation of tumor-associated 

genes— such as p16, TSHR, MGMT, and PTEN—have 

not shown any significant degree of hypermethylation 

in MTC
[73,85-87]

. Nevertheless, the existence of  

methylation in the promoter region of TERT gene  and 

consequent variation of DNA copy numbers within a 

huge cohort  study of MTC cases have been 

documented
[75]

. In fact, telomerase is a protein 

responsible for keeping and fixing telomeres of the 

chromosomes. Its activation by TERT has been 

increased frequently in many types of cancers, 

including MTC
[86]

. Wang and his colleagues
[75]

 have 

reported that TERT gene hypermethylation is related to 

high DNA copy number, and MTC patients with higher 

TERT methylation have lower chances of survival
[75]

. 

Epigenetic control through histone methyltrasferases 

in more aggressive forms of MTC have recently been 

investigated by Sponziello et al.
[76]

. In fact, the 

platform   of   epigenetic   regulatory  factors  and  their  
 

 
 

 

 

Fig. 3. Genetics of medullary thyroid cancer. 
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Fig. 4. Epigenetics of medullary thyroid cancer. 

 

 

mRNA levels profiling in a big cohort of MTC tissues  

has   revealed   the  fact   that   overexpression  of   two 

histone methyltransferases, EZH2 and SMYD3, is 

connected with higher risk of metastases, disease 

consistency, and finally death of patients: These can be 

prognostic biomarkers for MTC
[76,88]

. Remarkably, 

gene expression profile was free of RET or RAS 

mutations. 

The most common mutation is related to the RET 

mutation in genetic alteration of MTC tumorigenesis. 

The transcriptional activity of RET is controlled by 

epigenetic processes as well. It has been demonstrated 

that in colorectal cancer CpGisland methylation of RET 

gene promoter is a potential prognostic marker for 

stage II  of the disease
[89,90]

. Patients with considerable 

hypermethylated RET have worse overall survival 

compared to those with unmethylated RET 

promoter
[91]

. Significantly, RET expression is regulated 

by a transcription factor, homeobox B5
[92]

, which is 

related to the multi-species conserved sequence in the 

primary intron of the RET gene in addition to the 

higher level of RET transcription. Another regulating 

mechanism of RET transcription level is acethylation 

because in human neuroblastoma cells with a low RET 

mRNA level, histone deacetylase inhibitor and sodium 

butyrate cause hyper acetylation and increase the 

transcription of RET gene
[93]

. 

MiRNAs are small non-coding RNAs with the 

lengths of 20-23 nucleotides; they are classified as 

epigenetic modifiers
[94]

. MiRNAs are non-protein-

coding RNAs that alter gene expression through 

mRNA translation inhibition  or by means of the target  

molecule degrading
[94,95]

. In reality, mutations or 

abnormal expression of miRNAs are more often related 

to the pathogenesis of a wide range of cancers because 

they affect both tumor suppressors and oncogenes
[96]

. 

In spite of the fact that several studies have highlighted 

the role of miRNA profiling of MTC and its 

malignancy (Table 1), due to difficulty in obtaining 

normal C cells, none of the existing literature has 

compared miRNA profiles between MTC and normal 

C cells
[97]

. 

Ten miRNAs were shown to have different 

expression   patterns   between    sporadic    MTC   and  
 

 
 

 Table 1. A list of suggesting microRNA (miRNA) in medullary thyroid cancer  
 

A signature of increased and decreased miRNA associated with MTC 

miR-183, miR-375, miR-182, miR-29c, miR-130a, miR-138, miR-193-3p, miR-373, miR-498, miR-21, miR-

127, miR-224, miR-154, miR-323, miR-551b, miR-370, miR-9, miR-183, miR-375, miR-375, miR-10a 

Increasing miRNA 

  

miR-199b-5p, miR-223, let-07i, miR-200bl-200c, miR-10a, miR-129-5p, miR-455, and miR-7, miR9 Decreasing miRNA 
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hereditary MTC
[78]

. In correlation with clinical 

outcomes, high  levels of miR-183 and miR-375 were 

linked to the lateral lymph node and distant 

metastases
[78]

. Significantly, similarity in miRNA 

profiles of miR-183, miR-375, and miR-9-3p (miR-9) 

between primary tumor tissues and lymph node 

metastasis tissues was observed
[79]

. This was further to 

the role of miR-9-3pin in regulation of  autophagy
[80]

. 

More than that, a comparison of miRNA profiling 

between primary and metastatic forms of MTC 

highlighted 10 deregulated miRNAs
[81-83,98]

. There is 

possibility that the constitutive activation of RET, as a 

crucial occurrence in MTC tumor genesis, is regulated 

through epigenetic mechanisms like miRNAs
[81,99,100]

. 

From genetic point of view, RET mutations in 

codons 609 (C609X), 618 (C618X), 620 (C620X), 786 

(E768D), 804 (V804L), 819 (S891A), 918 (M918T), 
833 (A883F), 804 (V804M), 806 (Y806C), 632 

(Glu632), 633 (Leu633), and 918 (M918T) as well as 

HRAS, and KRAS mutations are the most important 

mutations that cause medullary thyroid carcinogenesis. 

From epigenetic perspective, RASSF1, TERT promoter 

methylations, histone methyltransferases (EZH2 and 

SMYD3) overexpression, and wide ranging increase 

and decrease of non-coding RNAs contribute to 

medullary thyroid carcinogenesis. 
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